19.如圖,在△ABC中,OB,OC分別是∠ABC,∠ACB的平分線(xiàn),OM∥BC,分別交AB,AC于點(diǎn)M,N.若MB=8,NC=6,則MN的長(zhǎng)是( 。
A.10B.8C.14D.6

分析 由∠ABC、∠ACB的平分線(xiàn)相交于點(diǎn)O,∠MBO=∠OBC,∠OCN=∠OCB,利用兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,利用等量代換可∠MBO=∠MOB,∠NOC=∠OCN,然后即可求得結(jié)論.

解答 解:∵∠ABC、∠ACB的平分線(xiàn)相交于點(diǎn)O,
∴∠MBO=∠OBC,∠OCN=∠OCB,
∵M(jìn)N∥BC,
∴∠OBC=∠MOB,∠NOC=∠OCB,
∴∠MBO=∠MOB,∠NOC=∠OCN,
∴BM=MO,ON=CN,
∴MN=MO+ON,
即MN=BM+CN.
∵M(jìn)B=8,NC=6,
∴MN=14,
故選:C.

點(diǎn)評(píng) 本題考查了角平分線(xiàn)性質(zhì)、平行線(xiàn)性質(zhì)、以及等角對(duì)等邊的性質(zhì)等.進(jìn)行線(xiàn)段的等量代換是正確解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如果3×27n×81n=322,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖1,在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=ax2+bx+c的圖象與x軸交于原點(diǎn)和點(diǎn)B(4,0),點(diǎn)A落在拋物線(xiàn)上,且OA=2,∠AOB=60°.
(1)則點(diǎn)A坐標(biāo)為(1,$\sqrt{3}$),二次函數(shù)的解析式為y=-$\frac{\sqrt{3}}{3}$x2+$\frac{4\sqrt{3}}{3}$x.
(2)求證:△OAB為直角三角形.
(3)如圖2:將△OAB繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△O1AB1,作出△O1AB1的外接圓⊙D,B1O1所在直線(xiàn)交x軸于點(diǎn)E.
①求點(diǎn)D的坐標(biāo);
②已知C(0,-3),連接BC,問(wèn):直線(xiàn)BC與圓D是否相切,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知Rt△ABC中,∠C=90°,AC=8.BC=6,點(diǎn)P以每秒1個(gè)單位的速度從
A向C運(yùn)動(dòng),同時(shí)點(diǎn)Q以每秒2個(gè)單位的速度從A→B→C方向運(yùn)動(dòng),它們到C點(diǎn)后都
停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(Ⅰ)在運(yùn)動(dòng)過(guò)程中,請(qǐng)你用t表示P、Q兩點(diǎn)間的距離,并求出P、Q兩點(diǎn)間的距離
的最大值;
(Ⅱ)經(jīng)過(guò)t秒的運(yùn)動(dòng),求△ABC被直線(xiàn)PQ掃過(guò)的面積S與時(shí)間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知平行四邊形ABCD,點(diǎn)M、N是邊DC、BC的中點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$;
(1)求向量$\overrightarrow{MN}$(用向量$\overrightarrow a$、$\overrightarrow b$表示);
(2)在圖中求作向量$\overrightarrow{MN}$在$\overrightarrow{AB}$、$\overrightarrow{AD}$方向上的分向量;(不要求寫(xiě)作法,但要指出所作圖中表示結(jié)論的向量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,將一副三角板的直角頂點(diǎn)重合,若∠AOD=145°,則∠BOC=35°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OE平分∠BOD,且∠AOC=∠COB-40°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖所示,將圖沿線(xiàn)折起來(lái),得到一個(gè)正方體,那么“我”的對(duì)面是數(shù)(填漢字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:
(1)3×(-4)+18÷(-6)
(2)(-2)2×5+(-2)3÷4.

查看答案和解析>>

同步練習(xí)冊(cè)答案