【題目】二次函數(shù)y=ax2+bx+c(a≠0,a,b,c為常數(shù))圖象如圖所示,根據(jù)圖象解答問題.
(1)寫出過程ax2+bx+c=0的兩個根.
(2)寫出不等式ax2+bx+c>0的解集.
(3)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.
【答案】(1)x1=﹣1,x2=3;(2)﹣1<x<3;(3)k的范圍為k<.
【解析】
(1)根據(jù)圖象可知x=-1和3是方程的兩根;
(2)找出函數(shù)值大于0時x的取值范圍即可;;
(3)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,則k必須小于y=ax2+bx+c(a≠0)的最大值,據(jù)此求出k的取值范圍.
(1)由圖象得:ax2+bx+c=0的兩個根為x1=﹣1,x2=3;
(2)由圖象得:不等式ax2+bx+c>0的解集為﹣1<x<3;
(3)設(shè)拋物線解析式為y=a(x+1)(x﹣3),
把(0,2)代入得:﹣3a=2,
解得:a=﹣,
∴拋物線解析式為y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,
∵方程ax2+bx+c=k有兩個不相等的實數(shù)根
∴二次函數(shù)與y=k有兩個交點,
由圖象得:k的范圍為k<.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在等邊三角形ABC中,點D、E分別是AB、BC延長線上的點,且BD=CE,直線CD與AE相交于點F.
(1)求證:DC=AE;
(2)求證:AD2=DCDF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件50元.當(dāng)售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中AC平分∠BAD,∠ADC=∠ACB=90,E為AB的中點,AC與DE交于點F.
(1)求證: =AB·AD;
(2)求證:CE//AD;
(3)若AD=6, AB=8.求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形 ABCD 的邊長為 10,E 在 BC 邊上運動,取 DE 的中點 G,EG 繞點 E 順時針旋轉(zhuǎn)90°得 EF,問 CE 長為多少時,A、C、F 三點在一條直線上( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(﹣6,0)、B(2,0)、C(0,6)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點P作y軸的垂線,垂足為點E,連接AE.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標(biāo);
(2)如果點P的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;
(3)過點P(﹣3,m)作x軸的垂線,垂足為點F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為點P,求出P的坐標(biāo).(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,點E為AC邊上一點,且AE=3cm,動點P從點A出發(fā),以1cm/s的速度沿線段AB向終點B運動,運動時間為x s.作∠EPF=90°,與邊BC相交于點F.設(shè)BF長為ycm.
(1)當(dāng)x= s時,EP=PF;
(2)求在點P運動過程中,y與x之間的函數(shù)關(guān)系式;
(3)點F運動路程的長是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于點D,點O是AB邊上一點,以O為圓心作⊙O且經(jīng)過A,D兩點,交AB于點E.
(1)求證:BC是⊙O的切線;
(2)AC=2,AB=6,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com