【題目】如圖,已知△ABC中,A=∠ACB,CDACB的平分線,ADC=150°,則ABC的度數(shù)為_____度.

【答案】140

【解析】

根據(jù)三角形內(nèi)角和定理可求得∠A+ACD=30°,結(jié)合∠A=ACB,以及CD平分∠ACB可求得∠A=20°,ACD=10°,再根據(jù)三角形外角的性質(zhì)即可求得∠ABC的度數(shù).

根據(jù)角平分線的性質(zhì)和已知條件即可求得.

CD平分∠ACB,

∴∠ACD=BCD=ACB,

ACD中,∠ADC=150°,

∴∠A+ACD=180°-150°=30°,

∵∠A=ACB,

∴∠A=20°,ACD=10°,

∴∠BCD=10°,

∵∠ADCBCD的外角,

∴∠ABC=ADC-BCD=150°-10°=140°,

故答案為:140.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小穎在如圖所示的四邊形場地上,沿邊騎自行車進(jìn)行場地追逐賽(兩人只要有一個人回到自己的出發(fā)點(diǎn),則比賽結(jié)束).小明從A地出發(fā),沿A→B→C→D→A的路線勻速騎行,速度為8/秒;小穎從B地出發(fā),沿B→C→D→A→B的路線勻速騎行,速度為6/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.設(shè)騎行時間為t秒,假定他們同時出發(fā)且每轉(zhuǎn)一個彎需要額外耗時2秒.

(1)填空:當(dāng)t=_____秒時,兩人第一次到B地的距離相等;

(2)試問小明能否在小穎到達(dá)D地前追上她?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),DG⊥CE,點(diǎn)G為垂足.
(1)求證:DC=BE;
(2)若∠AEC=66°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線m⊥n.在平面直角坐標(biāo)系xOy中,x軸∥m,y軸∥n.如果以O(shè)1為原點(diǎn),點(diǎn)A 的坐標(biāo)為(1,1).將點(diǎn)O1平移2 個單位長度到點(diǎn)O2 , 點(diǎn)A的位置不變,如果以O(shè)2為原點(diǎn),那么點(diǎn)A的坐標(biāo)可能是( )

A.(3,﹣1)
B.(1,﹣3)
C.(﹣2,﹣1)
D.(2 +1,2 +1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PC切⊙O于點(diǎn)C,AB的延長線與PC交于點(diǎn)P,PC的延長線與AD交于點(diǎn)D,AC平分∠DAB.
(1)求證:AD⊥PC;
(2)連接BC,如果∠ABC=60°,BC=2,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在求一個多邊形的內(nèi)角和時,由于疏忽,把一個內(nèi)角加了兩遍,而求出的結(jié)果為2004°,請問這個內(nèi)角是多少度?這個多邊形是幾邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P內(nèi)任意一點(diǎn),,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動點(diǎn),周長的最小值是5cm,則的度數(shù)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有客房50間,當(dāng)每間客房每天的定價(jià)為220元時,客房會全部住滿;當(dāng)每間客房每天的定價(jià)增加10元時,就會有一間客房空閑,設(shè)每間客房每天的定價(jià)增加x元時,客房入住數(shù)為y間.
(1)求y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)如果每間客房入住后每天的各種支出為40元,不考慮其他因素,則該賓館每間客房每天的定價(jià)為多少時利潤最大?

查看答案和解析>>

同步練習(xí)冊答案