【題目】如圖,將矩形紙片ABCD(圖1)按如下步驟操作:(1)以過點(diǎn)A的直線為折痕
折疊紙片,使點(diǎn)B恰好落在AD邊上,折痕與BC邊交于點(diǎn)E(如圖2);(2)以過點(diǎn)E的
直線為折痕折疊紙片,使點(diǎn)A落在BC邊上,折痕EF交AD邊于點(diǎn)F(如圖3);(3)將紙
片收展平,那么∠AFE的度數(shù)為 ( )
A. 60° B. 67.5° C. 72° D. 75°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在三角形ABC中,點(diǎn)E,F(xiàn)分別為線段AB,AC上任意兩點(diǎn),EG交BC于點(diǎn)G,交AC的延長(zhǎng)線于點(diǎn)H,∠1+∠AFE=180°.
(1)證明:BC∥EF;
(2)如圖②,若∠2=∠3,∠BEG=∠EDF,證明:DF平分∠AFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點(diǎn)為D,AB經(jīng)過圓心O并與圓相交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的推理.
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,試說明:AB∥CD.
完成推理過程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AD 是高,∠BAD=60°,∠CAD=20°,AE 平分∠BAC,則∠EAD 的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠BAC=90°,AC=8 cm,AD⊥BC于點(diǎn)D.點(diǎn)P從點(diǎn)A出發(fā),沿A→C方向以 cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止.在運(yùn)動(dòng)過程中,過點(diǎn)P作PQ∥AB交BC于點(diǎn)Q,以線段PQ為邊作等腰直角三角形PQM,且∠PQM=90°(點(diǎn)M,C位于PQ異側(cè)).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s),△PQM與△ADC重疊部分的面積為y(cm2)
(1)當(dāng)點(diǎn)M落在AB上時(shí),求x的值;
(2)當(dāng)點(diǎn)M落在AD上時(shí),PM與CD之間的數(shù)量關(guān)系是 , 此時(shí)x的值是;
(3)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OA的方向是北偏東20,射線OB的方向是北偏西40,OD是OB的反向延長(zhǎng)線,OC是∠AOD的平分線。
(1)求∠BOC的度數(shù);
(2)求出射線OC的方向。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP為∠AOB的平分線,PC⊥OA,PD⊥OB,垂足分別是C,D,E為OP上一點(diǎn),則下列結(jié)論錯(cuò)誤的是( )
A. CE=DEB. ∠CPO=∠DEPC. ∠CEO=∠DEOD. OC=OD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com