【題目】某公司組織員工出去旅游,公司聯(lián)系旅游公司提供車輛,該公司現(xiàn)有50座與35座兩種車輛,如果用35座的車,會有5人沒座;如果全部換乘50座的車,則可少用2輛車,而且多出15個座位.

若該公司只能單獨租其中一種車,則分別需要多少輛?

35座車的日租金為250輛,50座的日租金為320輛,有哪種方案能使座位剛好且費用最少?用這種方案公司要出多少資金.

【答案】18,6;(2351輛,505輛,1850

【解析】

根據(jù)題意列出二元一次方程組進行求解即可;

用一次函數(shù)的關系表示公司租車資金,根據(jù)題意和函數(shù)性質進行判斷即可得出.

解:設租35座的車需x輛,20座的車需y輛,由題意得:

,解得:

故只租35座的需8輛,只租50座的需6輛.

得,該公司組織出游的員工總數(shù)為人,

設租35座的需要m輛,其余人乘坐50座客車,則所花金額為y,

化簡得:

由于要求能使座位剛好且費用最少,

時符合題意

故租用35座汽車1輛,50座客車5輛時,費用最低為1850元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了更好治理西太湖水質,保護環(huán)境,市治污公司決定購買10臺污水處理設備,現(xiàn)有A、B兩種型號的設備,其中每臺的價格,月處理污水量如下表:

經調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買4B型設備少4萬元.

1)求a、b的值;

2)經預算:市治污公司購買污水處理設備的資金不超過47萬元,你認為該公司有哪幾種購買方案;

3)在(2)問的條件下,若該月要求處理西太湖的污水量不低于1860噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】模型建立:

(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經過點C,過AADEDD,過BBEEDE

求證:△BEC≌△CDA

模型應用:

(2)已知直線l1y=x+4y軸交與A點,將直線l1繞著A點順時針旋轉45°l2,如圖2,求l2的函數(shù)解析式.

(3)如圖3,矩形ABCO,O為坐標原點,B的坐標為(8,6)A、C分別在坐標軸上,P是線段BC上動點,設PC=m,已知點D在第一象限,且是直線y=2x-6上的一點,若△APD是不以A為直角頂點的等腰Rt△,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解同學對體育活動的喜愛情況,某校設計了“你最喜歡的體育活動是哪一項(僅限一項)”的調查問卷.該校對本校學生進行隨機抽樣調查,以下是根據(jù)調查數(shù)據(jù)得到的統(tǒng)計圖的一部分.請根據(jù)以上信息解答以下問題:

(1)該校對多少名學生進行了抽樣調查?

(2)請補全圖1并標上數(shù)據(jù).

(3)若該校共有學生900人,請你估計該校最喜歡跳繩項目的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD的兩邊AB,AD的長是關于x的方程x2mx0的兩個實數(shù)根.

(1)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點.

(1)求該拋物線的解析式;

(2)若拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.

(3)在拋物線的第二象限圖象上是否存在一點P,使得PBC的面積最大?若存在,求出點P的坐標及PBC的面積最大值;若不存,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網格中,每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.網格中有一個格點ABC(即三角形的頂點都在格點上).

1)在圖中作出ABC關于直線l對稱的A1B1C1 (要求AA1BB1,CC1相對應);

2)求ABC的面積;

3)在直線l上找一點P,使得PAC的周長最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知:如圖,E、F分別是ABCDADBC邊上的點,且AE=CF

1)求證:△ABE≌△CDF;

2)若M、N分別是BE、DF的中點,連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結論.

查看答案和解析>>

同步練習冊答案