【題目】為了幫助遭受自然災(zāi)害的地區(qū),某學(xué)校號召同學(xué)們自愿捐款,已知第一次捐款總額為5800元,第二次捐款總額6000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額正好相等.
型 | 型 | |
每桶容積(升) | 20 | 15 |
每桶價格(元) | 5.6 | 4.5 |
(1)求兩次各有多少人捐款?
(2)民政部門要求將捐款換成實(shí)物,統(tǒng)一運(yùn)送到災(zāi)區(qū).學(xué)校決定將捐款用于購買桶裝水現(xiàn)有兩種型號桶裝水,上表是這兩種桶裝水的容積和單價.學(xué)校按民政局的救災(zāi)規(guī)劃需訂購總?cè)莘e為40000升的桶裝水,用同學(xué)們的捐款至少需訂購型水多少桶.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角標(biāo)系中,拋物線C:y=與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為y軸正半軸上一點(diǎn).且滿足OD=OC,連接BD,
(1)如圖1,點(diǎn)P為拋物線上位于x軸下方一點(diǎn),連接PB,PD,當(dāng)S△PBD最大時,連接AP,以PB為邊向上作正△BPQ,連接AQ,點(diǎn)M與點(diǎn)N為直線AQ上的兩點(diǎn),MN=2且點(diǎn)N位于M點(diǎn)下方,連接DN,求DN+MN+AM的最小值
(2)如圖2,在第(1)問的條件下,點(diǎn)C關(guān)于x軸的對稱點(diǎn)為E,將△BOE繞著點(diǎn)A逆時針旋轉(zhuǎn)60°得到△B′O′E′,將拋物線y=沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點(diǎn)E,此時拋物線C′與x軸的右交點(diǎn)記為點(diǎn)F,連接E′F,B′F,R為線段E’F上的一點(diǎn),連接B′R,將△B′E′R沿著B′R翻折后與△B′E′F重合部分記為△B′RT,在平面內(nèi)找一個點(diǎn)S,使得以B′、R、T、S為頂點(diǎn)的四邊形為矩形,求點(diǎn)S的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中.
(1)作出△ABC關(guān)于軸對稱的,并寫出三個頂點(diǎn)的坐標(biāo);
(2)直接寫出△ABC的面積為 ;
(3)在x軸上畫點(diǎn)P,使PA+PC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,為射線上一定點(diǎn),點(diǎn)關(guān)于射線的對稱點(diǎn)為點(diǎn)為射線上一動點(diǎn),連接,滿足為鈍角,以點(diǎn)為中心,將線段逆時針旋轉(zhuǎn)至線段,滿足點(diǎn)在射線的反向延長線上.
(1)依題意補(bǔ)全圖形;
(2)當(dāng)點(diǎn)在運(yùn)動過程中,旋轉(zhuǎn)角是否發(fā)生變化?若不變化,請求出的值,若變化,請說明理由;
(3)從點(diǎn)向射線作垂線,與射線的反向延長線交于點(diǎn),探究線段和的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AH是⊙O的直徑,點(diǎn)E,F分別在矩形ABCD的邊BC和CD上,B為直徑OH上一點(diǎn),AE平分∠FAH交⊙O于點(diǎn)E,過點(diǎn)E的直線FG⊥AF,垂足為F.
(1)求證:直線FG是⊙O的切線;
(2)若AD=8,EB=5,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年第六屆世界互聯(lián)網(wǎng)大會在烏鎮(zhèn)召開,小南和小西參加了某分會場的志愿服務(wù)工作,本次志愿服務(wù)工作一共設(shè)置了三個崗位,分別是引導(dǎo)員、聯(lián)絡(luò)員和咨詢員.請你用畫樹狀圖或列表法求出小南和小西恰好被分配到同一個崗位進(jìn)行志愿服務(wù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖點(diǎn)A,E,F,C在同一直線上,AE=EF=FC,過E,F分別作DE⊥AC,BF⊥AC,連結(jié)AB,CD,BD,BD交AC于點(diǎn)G,若AB=CD.
(1)求證:△ABF≌△CDE.
(2)若AE=ED=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩只捕撈船同時從A港出海捕魚.甲船以每小時千米的速度沿西偏北30°方向前進(jìn),乙船以每小時15千米的速度沿東北方向前進(jìn).甲船航行2小時到達(dá)C處,此時甲船發(fā)現(xiàn)漁具丟在乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕,結(jié)果兩船在B處相遇.
(1)甲船從C處追趕上乙船用了多少時間?
(2)甲船追趕乙船的速度是每小時多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com