4.如圖,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊DC上,AE平分∠DAC,EF⊥AC,點(diǎn)F為垂足,那么FC=$\sqrt{2}$-1.

分析 根據(jù)正方形的性質(zhì)和已知條件可求得AF,AC的長(zhǎng),從而不難得到FC的長(zhǎng).

解答 解:∵四邊形ABCD是正方形,
∴AB=BC=AD=CD=1,∠D=∠B=90°,
∴AC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∵AE平分∠DAC,EF⊥AC交于F,
∴AF=AD=1,
∴FC=AC-AF=$\sqrt{2}$-1,
故答案為:$\sqrt{2}-1$;

點(diǎn)評(píng) 本題主要考查了正方形的性質(zhì)、勾股定理、角平分線的性質(zhì);熟練掌握正方形的性質(zhì),求出AF=AD是解決問(wèn)題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若代數(shù)式$\frac{\sqrt{2-x}}{2x-3}$在實(shí)數(shù)內(nèi)范圍有意義,則x的取值范圍為x≤2且x≠$\frac{3}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,AB是⊙O的直徑,點(diǎn)D是$\widehat{AE}$上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DF•DB;
(3)在(2)的條件下,延長(zhǎng)ED、BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,四邊形ABCD中,∠ABC的平分線與外角∠DCE的平分線相交于點(diǎn)P,若∠A=140°,∠D=120°,則∠BPC=40度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知:如圖,在平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別為點(diǎn)E,點(diǎn)F.
(1)求證:BE=DF.
(2)求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,D、E分別為邊AB、AC的中點(diǎn),連結(jié)DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AE-ED-DB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在折線AE-ED上以每秒1個(gè)單位的速度運(yùn)動(dòng),在DB上以每秒$\sqrt{5}$個(gè)單位的速度運(yùn)動(dòng).過(guò)點(diǎn)P作PQ⊥BC于點(diǎn)Q,以PQ為邊在PQ右側(cè)作正方形PQMN,使點(diǎn)M落在線段BC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)在整個(gè)運(yùn)動(dòng)過(guò)程中,求正方形PQMN的頂點(diǎn)N落在AB邊上時(shí)對(duì)應(yīng)的t的值;
(2)連結(jié)BE,設(shè)正方形PQMN與△BED重疊部分圖形的面積為S,請(qǐng)直接寫(xiě)出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)當(dāng)正方形PQMN頂點(diǎn)P運(yùn)動(dòng)到與點(diǎn)E重合時(shí),將正方形PQMN繞點(diǎn)Q逆時(shí)針旋轉(zhuǎn)60°得正方形P1QM1N1,問(wèn)在直線DE與直線AC上是否存在點(diǎn)G和點(diǎn)H,使△GHP1是等腰直角三角形?若存在,請(qǐng)求出EG的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.對(duì)點(diǎn)P(x,y)的一次操作變換記為P1(x,y),定義其變換法則如下:P1(x,y)=(x+y,x-y),且規(guī)定Pn(Pn+1(x,y))(n為大于1的整數(shù)).如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2),則P2016(0,-2)=( 。
A.(0,21008B.(0,-21008C.(0,21009D.(0,-21009

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某乳品公司向某地運(yùn)輸一批牛奶,由鐵路運(yùn)輸每千克需運(yùn)費(fèi)0.60元,由公路運(yùn)輸,每千克需運(yùn)費(fèi)0.30元,另需補(bǔ)助600元.
(1)設(shè)該公司運(yùn)輸?shù)倪@批牛奶為x千克,選擇鐵路運(yùn)輸時(shí),所需運(yùn)費(fèi)為y1元,選擇公路運(yùn)輸時(shí),所需運(yùn)費(fèi)為y2元,請(qǐng)分別寫(xiě)出y1、y2與x之間的關(guān)系式;
(2)若公司只支出運(yùn)費(fèi)1500元,則選用哪種運(yùn)輸方式運(yùn)送的牛奶多?若公司運(yùn)送1500千克牛奶,則選用哪種運(yùn)輸方式所需用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若點(diǎn)(-3,1-2m)在第三象限內(nèi),則m的取值范圍是m>$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案