【題目】如圖,在平行四邊形中,的平分線與的延長線交于點E,與DC交于點F,且點F為邊DC的中點,,垂足為,若,則的長為_____________
【答案】
【解析】
由平行四邊形的性質(zhì)和角平分線證出AD=DF,由F為DC中點,AB=CD,求出AD與DF的長,得出三角形ADF為等腰三角形,根據(jù)三線合一得到G為AF中點,在直角三角形ADG中,由AD與DG的長,利用勾股定理求出AG的長,進(jìn)而求出AF的長,再由AAS證明ADF≌△ECF全等,得出AF=EF,即可求出AE的長.
∵AE為∠DAB的平分線,
∴∠DAE=∠BAE,
∵DC∥AB,
∴∠BAE=∠DFA,
∴∠DAE=∠DFA,
∴AD=FD,
又F為DC的中點,
∴DF=CF,
∴AD=DF=DC=AB=4,
在Rt△ADG中,根據(jù)勾股定理得:AG= ,
則AF=2AG=2,
∵平行四邊形ABCD中,
∴AD∥BC,
∴∠DAF=∠E,∠ADF=∠ECF,
在△ADF和△ECF中, ,
∴△ADF≌△ECF(AAS),
∴AF=EF,
則AE=2AF=2×2=4,
故答案為:4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索:小明和小亮在研究一個數(shù)學(xué)問題:已知AB∥CD,AB和CD都不經(jīng)過點P,探索∠P與∠A,∠C的數(shù)量關(guān)系.
發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):∠APC=∠A+∠C;
小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請在上面證明過程的過程的橫線上,填寫依據(jù);兩人的證明過程中,完全正確的是 .
應(yīng)用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數(shù)為 ;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數(shù)為 ;
拓展:
在圖4中,探索∠P與∠A,∠C的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點P是AB邊上一點(不與A,B重合),過點P作PQ⊥CP,交AD邊于點Q,且,連結(jié).
(1)求證:四邊形是矩形;
(2)若CP=CD,AP=2,AD=6時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻印⒈憬荩承?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制如圖所示的兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中所給出的信息解答下列問題:
(1)本次抽樣調(diào)查的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若某商場天內(nèi)有人次支付記錄,估計選擇微信支付的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中第九卷《勾股》主要講述了以測量問題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”
譯文:“今有正方形水池邊長為1丈,有棵蘆葦生長在它長出水面的部分為1尺.將蘆葦?shù)闹醒,向池岸牽引,恰好與水岸齊接.問水深,蘆葦?shù)拈L度分別是多少尺?”(備注:1丈=10尺)
如果設(shè)水深為尺,那么蘆葦長用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,點E在CD上,點F在AB上,連接AE、CF、DF、BE,∠DAE=∠BCF.
(1)如圖1,求證:四邊形DFBE是平行四邊形;
(2)如圖2,若E是CD的中點,連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠XOY=90°,點A、B分別在射線OX、OY上移動,BE是∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C,試問∠ACB的大小是否發(fā)生變化?如果保持不變,請給出證明;如果隨點A、B移動發(fā)生變化,請求出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE⊥BF于點M,求證:AE=BF;
(2)如圖2,將 (1)中的正方形ABCD改為矩形ABCD,AB=2,BC=3,AE⊥BF于點M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com