如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M.
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN.
【答案】分析:(1)根據(jù)AB∥CD,∠ACD=114°,得出∠CAB=66°,再根據(jù)AM是∠CAB的平分線,即可得出∠MAB的度數(shù).
(2)根據(jù)∠CAM=∠MAB,∠MAB=∠CMA,得出∠CAM=∠CMA,再根據(jù)CN⊥AD,CN=CN,即可得出△ACN≌△MCN.
解答:(1)解:∵AB∥CD,
∴∠ACD+∠CAB=180°,
又∵∠ACD=114°,
∴∠CAB=66°,
由作法知,AM是∠CAB的平分線,
∴∠MAB=∠CAB=33°

(2)證明:∵AM平分∠CAB,
∴∠CAM=∠MAB,
∵AB∥CD,
∴∠MAB=∠CMA,
∴∠CAM=∠CMA,
又∵CN⊥AM,
∴∠ANC=∠MNC,
在△ACN和△MCN中,
,
∴△ACN≌△MCN.
點評:此題考查了作圖-復(fù)雜作圖,用到的知識點是全等三角形的判定、平行線的性質(zhì)、角平分線的性質(zhì)等,解題的關(guān)鍵是證出∠CAM=∠CMA.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•紹興)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于
12
EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M.
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷集縣二模)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于
12
EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M.
(1)根據(jù)題意,利用直尺與圓規(guī),把圖補充完整,若∠ACD=114°,求∠MAB的度數(shù);
(2)利用直尺與圓規(guī)作CN⊥AM,垂足為N,交AB于Q,求證:四邊形AQMC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB∥CD,以點A為圓心,小于AC的長為半徑畫弧,分別交AB、AC于E、F兩點;再分別以E、F為圓心,大于
1
2
EF
的長為半徑畫弧,兩弧交于點P,作射線AP,交CD于點M.若∠CMA=25°,則∠C的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E、F為圓心,大于
12
EF的長為半徑畫弧,兩弧交于點P,作射線AP,交CD于點M.若∠ACD=120°,則∠MAB的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(浙江紹興卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M。

(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。

查看答案和解析>>

同步練習(xí)冊答案