【題目】綜合與實踐

問題情境:在數(shù)學活動課上,我們給出如下定義:順次連按任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖(1),在四邊形ABCD中,點E,F,GH分別為邊AB,BCCD,DA的中點.試說明中點四邊形EFGH是平行四邊形.

探究展示:勤奮小組的解題思路:

反思交流:

1上述解題思路中的依據(jù)1”、依據(jù)2”分別是什么?

依據(jù)1   ;依據(jù)2   ;

連接AC,若ACBD時,則中點四邊形EFGH的形狀為   ;

創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)探究:

2)如圖(2),點P是四邊形ABCD內(nèi)一點,且滿足PAPB,PCPD,APBCPD,點E,F,GH分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并說明理由;

3)若改變(2)中的條件,使APBCPD90°,其它條件不變,則中點四邊形EFGH的形狀為   

【答案】1依據(jù)1:三角形的中位線定理.依據(jù)2:一組對邊平行且相等的四邊形是平行四邊形.菱形.理由見解析;(2)四邊形EFGH是菱形.理由見解析;(3)正方形.理由見解析.

【解析】

1)根據(jù)三角形中位線定理解答即可;

2)根據(jù)平行四邊形的判定和菱形的判定解答即可.

3)根據(jù)有一個角是直角的菱形是正方形即可證明.

1)①依據(jù)1:三角形的中位線定理.

依據(jù)2:一組對邊平行且相等的四邊形是平行四邊形.

②菱形.

理由:如圖1中,

AEBE,AHHD

EHBD,

DHHA,DGGC,

HGAC,

HEHG,

∵四邊形EFGH是平行四邊形,

∴四邊形EFGH是菱形.

故答案為三角形中位線定理,一組對邊平行且相等的四邊形是平行四邊形,菱形.

2)結(jié)論:四邊形EFGH是菱形.

理由:如圖2中,連接ACBD

∵∠APB=∠CPD

∴∠APB+APD=∠CPD+APD

即:∠BPD=∠APC

PAPB,PCPD

∴△APC≌△BPD

ACBD

HGHE

由(1)可知:四邊形EFGH是平行四邊形

∴四邊形EFGH是菱形.

3)結(jié)論:正方形.

理由:如圖21中,連接AC,BD,BDAC于點O,交GH于點KACPD于點J

∵△APC≌△BPD,∠DPC90°,

∴∠PDB=∠PCA,

∵∠PJC=∠DJO

∴∠CPJ=∠DOJ90°,

HGAC,

∴∠BKG=∠BOC90°

EHBD,

∴∠EHG=∠BKG90°,

∵四邊形EFGH是菱形,

∴四邊形EFGH是正方形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB與⊙O相切于點C,OA,OB分別交⊙O于點D,E, =
(1)求證:OA=OB;
(2)已知AB=4 ,OA=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線ABx軸交于點A1,0),與y軸交于點B0,-2).

1)求直線AB的表達式;

2)若直線AB上有一動點C,且,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠C=90°BE平分∠ABC,DF平分∠ADC,則BEDF有何位置關(guān)系?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.

(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了增強學生對中華優(yōu)秀傳統(tǒng)文化的理解,決定購買一批相關(guān)的書籍.據(jù)了解,經(jīng)典著作的單價比傳說故事的單價多6元,用10000元購買經(jīng)典著作與用7000元購買傳說故事的本數(shù)相同,這兩類書籍的單價各是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象分別與軸交于兩點,正比例函數(shù)的圖象交于點

1)求的值及的解析式;

2)求的值;

3)一次函數(shù)的圖象為不能圍成三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,⊙O交BC的中點于D,DE⊥AC于E,連接AD,則下列結(jié)論:
①AD⊥BC;②∠EDA=∠B;③OA= AC;④DE是⊙O的切線,正確的個數(shù)是( )

A.1 個
B.2個
C.3 個
D.4個

查看答案和解析>>

同步練習冊答案