【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,該村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)HA、HB在同一條直線(xiàn)上),并新修一條路CH,測(cè)得CB2.5千米,CH2千米,HB1.5千米.

1)問(wèn)CH是否為從村莊C到河邊的最近路?請(qǐng)通過(guò)計(jì)算加以說(shuō)明;

2)求原來(lái)的路線(xiàn)AC的長(zhǎng).(精確到0.01

【答案】1)是,見(jiàn)解析;(22.08千米

【解析】

1)由題意直接根據(jù)勾股定理的逆定理解答即可;

2)由題意直接根據(jù)勾股定理解答即可.

解:(1)是.理由如下:

△CHB中,CB2.5CH2,HB1.5

∵CH2+HB222+1.526.25,CB22.526.25

∴CH2+HB2CB2,

∴CH⊥AB,

CH是從村莊C到河邊的最近路;

2)設(shè)ACx千米,則ABACx千米,AHx1.5(千米)

Rt△AHC中,由勾股定理得:AH2+HC2AC2

∴x2=(x1.52+22

解得:x≈2.08

答:原來(lái)的路線(xiàn)AC的長(zhǎng)約為2.08千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿(mǎn)分11分如圖,已知拋物線(xiàn)的頂點(diǎn)D的坐標(biāo)為(1,),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),A點(diǎn)的坐標(biāo)為(4,0).P點(diǎn)是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且橫坐標(biāo)為m

(l)求拋物線(xiàn)所對(duì)應(yīng)的二次函數(shù)的表達(dá)式;

(2)若動(dòng)點(diǎn)P滿(mǎn)足PAO不大于45°,求P點(diǎn)的橫坐標(biāo)m的取值范圍;

(3)當(dāng)P點(diǎn)的橫坐標(biāo)時(shí),過(guò)p點(diǎn)作y軸的垂線(xiàn)PQ,垂足為Q.問(wèn):是否存在P點(diǎn),使QPO=BCO?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,中,,點(diǎn)在數(shù)軸-1處,點(diǎn)在數(shù)軸1處,,,則數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是

2)如圖2,點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)垂直軸于點(diǎn),點(diǎn)軸上的動(dòng)點(diǎn),當(dāng)以,,為頂點(diǎn)的三角形為等腰直角三角形時(shí)點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老師所留的作業(yè)中有這樣一個(gè)分式的計(jì)算題:,甲、乙兩位同學(xué)完成的過(guò)程分別如下:

老師發(fā)現(xiàn)這兩位同學(xué)的解答都有錯(cuò)誤.

請(qǐng)你從甲、乙兩位同學(xué)中,選擇一位同學(xué)的解答過(guò)程,幫助他分析錯(cuò)因,并加以改正.

1)我選擇     同學(xué)的解答過(guò)程進(jìn)行分析.(填“甲”或“乙”)該同學(xué)的解答從第     步開(kāi)始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是     ;

2)請(qǐng)重新寫(xiě)出完成此題的正確解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在中,,平分,

(1);

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣2,8)和(﹣1,5),求這個(gè)二次函數(shù)的表達(dá)式;

(2)已知拋物線(xiàn)的頂點(diǎn)為(﹣1,﹣3),與y軸的交點(diǎn)為(0,﹣5),求這個(gè)拋物線(xiàn)相應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線(xiàn)的交點(diǎn)的三角形)的頂點(diǎn),的坐標(biāo)分別為

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格內(nèi)作出軸、軸;

2)請(qǐng)作出關(guān)于軸對(duì)稱(chēng)的(不寫(xiě)畫(huà)法),并寫(xiě)出點(diǎn)的坐標(biāo);

3)求出關(guān)于軸對(duì)稱(chēng)的的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、Cx軸上,點(diǎn)D、Ey軸上,OA=OD=2,OC=OE=4,B為線(xiàn)段OA的中點(diǎn),直線(xiàn)AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)交于F、G兩點(diǎn),與其對(duì)稱(chēng)軸交于M,點(diǎn)P為線(xiàn)段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQy軸與拋物線(xiàn)交于點(diǎn)Q.

(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)的解析式;

(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時(shí),以P、O、C為頂點(diǎn)的三角形是等腰三角形,并求出此時(shí)點(diǎn)P的坐標(biāo);

(3)若拋物線(xiàn)的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.

(1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?

(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案