【題目】如圖,等腰△ABC中,AB=AC,AD平分∠BAC,點E是線段BC延長線上一點,連接AE,點C在AE的垂直平分線上,若DE=10cm,則AB+BD=cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個正方體,六個面上分別寫有六個連續(xù)的整數(shù)(如圖所示),且每兩個相對面上的數(shù)字和相等,本圖所能看到的三個面所寫的數(shù)字分別是:,,,問:與它們相對的三個面的數(shù)字各是多少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點A對稱點D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個三角形拼合形成一個矩形,類似地,對多邊形進行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩形,這樣的矩形稱為疊合矩形.
(1)將□ABCD紙片按圖2的方式折疊成一個疊合矩形AEFG,則操作形成的折痕分別是線段_______,_________;S矩形AEFG:S□ABCD=__________.
(2)□ABCD紙片還可以按圖3的方式折疊成一個疊合矩形EFGH,若EF=5,EH=12,求AD的長;
(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請你幫助畫出一種疊合正方形的示意圖,并求出AD、BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖①,∠MON=60°,點A,B為射線OM,ON上的動點(點A,B不與點O重合),且AB=4 ,在∠MON的內(nèi)部,△AOB的外部有一點P,且AP=BP,∠APB=120°.
(1)求AP的長;
(2)求證:點P在∠MON的平分線上.
(3)如圖②,點C,D,E,F(xiàn)分別是四邊形AOBP的邊AO,OB,BP,PA的中點,連接CD,DE,EF,F(xiàn)C,OP.
①當(dāng)AB⊥OP時,請直接寫出四邊形CDEF的周長的值;
②若四邊形CDEF的周長用t表示,請直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,左面的幾何體叫三棱柱,它有五個面,條棱,個頂點,中間和右邊的幾何體分別是四棱柱和五棱柱.
四棱柱有________個頂點,________條棱,________個面;
五棱柱有________個頂點,________條棱,________個面;
你能由此猜出,六棱柱、七棱柱各有幾個頂點,幾條棱,幾個面嗎?
棱柱有幾個頂點,幾條棱,幾個面嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=°時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點A(﹣3,0)、B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△2017的直角頂點的坐標(biāo)為.( 。.
A. (4032,0) B. (4032,) C. (8064,0) D. (8052, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE∥BF,∠1與∠2互補.
(1)試說明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,則DE與AC垂直嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊形ABCD的一邊AD,點D落在BC邊上的點F處,AE是折痕,已知AB=8cm,BC=10cm.則CE=__cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com