在特殊四邊形的復(fù)習(xí)課上,王老師出了這樣一道題:
問題情境:
如圖2,在菱形ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動點(diǎn),連接EG,HF相交于點(diǎn)O,且∠HOE=∠ADC,試探究:EG與FH的數(shù)量關(guān)系.
經(jīng)過小組討論后,小聰建議分以下兩步進(jìn)行,請你解答:
(1)特殊情況,探索結(jié)論
當(dāng)菱形ABCD是正方形時(如圖1),EG與FH有怎樣的數(shù)量關(guān)系呢?
小聰想:要求EG與FH的數(shù)量關(guān)系,就要構(gòu)造全等三角形或相似三角形,于是,分別過點(diǎn)G、H作GM⊥AB于點(diǎn)M,HN⊥BC于點(diǎn)N,在△HNF和△GME中,有∠GME=∠HNF=90°,由正方形的性質(zhì)可得GM=HN,能否從已知條件得到∠MGE=∠NHF呢?請你根據(jù)小聰?shù)乃悸吠瓿山獯疬^程;
(2)特例啟發(fā),解答題目
猜想:原題中EG與FH的數(shù)量關(guān)系是
 
,并說明理由.
(3)反思提升,拓展延伸
課后小聰對本題作了反思,提出了如下猜想:將題目中的菱形ABCD改為?ABCD(如圖3),AB=a,AD=b,其他條件不變,則
EG
FH
=
b
a
.小聰?shù)牟孪胝_嗎?請說明理由.
考點(diǎn):四邊形綜合題
專題:
分析:(1)過G作GM⊥AB于M,過H作HN⊥BC于N,求出GM=HN,求出∠GME=∠HNF=90°,∠GEM=∠HFN,證出△GME≌△HNF即可;
(2)過G作GM⊥AB于M,過H作HN⊥BC于N,根據(jù)菱形面積公式求出GM=HN,求出∠GME=∠HNF=90°,∠GEM=∠HFN,證出△GME≌△HNF即可;
(3)過G作GM⊥AB于M,過H作HN⊥BC于N,根據(jù)平行四邊形面積公式求出
EG
FH
=
GM
HN
=
b
a
,求出∠GME=∠HNF=90°,∠GEM=∠HFN,證出△GME∽△HNF即可.
解答:(1)解:EG=FH,
理由是:如圖1,過G作GM⊥AB于M,過H作HN⊥BC于N,
∵四邊形ABCD是正方形,
∴DC=AB,AD∥BC,DC∥AB,AD=BC,∠D=∠A=∠B=∠C=90°,
∴GM∥AD∥BC,HN∥DC∥AB,
∴四邊形ADGM、四邊形GMBC、四邊形AHNB,四邊形DCNH是平行四邊形,
∴DC=HN=AB,AD=GM=BC,
∴HN=GM,
∵∠ADC=∠HOE=90°,
∴∠DHO+∠DGE=360°-90°-90°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
∵HN⊥BC,GM⊥AB,
∴∠GME=∠HNF=90°,
在△GME和△HNF中
∠GEM=∠HFN
∠GME=∠HNF
GM=HN

∴△GME≌△HNF,
∴EG=FH;

(2)EG=FH,
理由是:如圖2,過G作GM⊥AB于M,過H作HN⊥BC于N,
∵四邊形ABCD是菱形,
∴DC=AB=BC,AD∥BC,DC∥AB,
∵菱形ABCD的面積S=AB×GM=BC×HN,
∴GM=HN,
∵GM⊥AB,HN⊥BC,∴∠GME=∠HNF=90°,
∵∠ADC=∠HOE,
∴∠ADC+∠HOG=∠EOH+∠HOG=180°
∴∠DHO+∠DGE=360°-180°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
在△GME和△HNF中
∠GEM=∠HFN
∠GME=∠HNF
GM=HN
,
∴△GME≌△HNF(AAS),
∴EG=FH.

(3)正確;
理由是:如圖3,過G作GM⊥AB于M,過H作HN⊥BC于N,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,DC∥AB,
∵平行四邊形ABCD的面積S=AB×GM=BC×HN,
∵AB=a,AD=b,
GM
HN
=
b
a
,
∵GM⊥AB,HN⊥BC,
∴∠GME=∠HNF=90°,
∵∠ADC=∠HOE,
∴∠ADC+∠HOG=∠EOH+∠HOG=180°,
∴∠DHO+∠DGE=360°-180°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
∴△GME∽△HNF,
EG
FH
=
GM
HN
=
b
a
點(diǎn)評:本題考查了正方形性質(zhì),平行四邊形性質(zhì),菱形性質(zhì),面積公式,全等三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定的應(yīng)用,題目具有一定的代表性,證明過程類似.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,點(diǎn)B沿CB所在直線遠(yuǎn)離C點(diǎn)移動,下列說法不正確的是(  )
A、三角形面積隨之增大
B、∠CAB的度數(shù)隨之增大
C、邊AB的長度隨之增大
D、BC邊上的高隨之增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直徑為1個單位長度的圓從原點(diǎn)O開始沿數(shù)軸向右滾動一周,該圓上的最初與原點(diǎn)重合的點(diǎn)到達(dá)點(diǎn)O′,點(diǎn)O′對應(yīng)的數(shù)是(  )
A、1B、π
C、3.14D、3.1415926

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列四張撲克牌圖案中,是中心對稱圖形的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某中學(xué)籃球隊13名隊員的年齡情況如下:
年齡(單位:歲) 15 16 17 18
人數(shù) 3 4 5 1
則這個隊隊員年齡的眾數(shù)和中位數(shù)是(  )
A、15,15.5
B、17,16
C、16,16.5
D、17,17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果關(guān)于x的不等式組
9x-a≥0
8x-b<0
整數(shù)解僅為1、2、3,那么適合條件的有序整數(shù)對(a,b)共有多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

文文給明明出了一道解一元二次方程的題目如下:
解方程 (x-1)2=2(x-1).明明的求解過程為:
解:方程兩邊同除以x-1,得  x-1=2      第1步 
移項,得      x=3                   第2步
∴方程的解是  x1=x2=3                第3步
文文說:你的求解過程的第1步就錯了…
(1)文文的說法對嗎?請說明理由;
(2)你會如何解這個方程?給出過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡求值:
(1)
3
64
125
-
38
+
1
100
-(-2)3
(2)2
2
-3
3
+
2
-
3
-3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計算:(
1
5
-1+(1+
3
2-
12

(2)解方程:
4x
x-2
-1=
4
2-x

查看答案和解析>>

同步練習(xí)冊答案