【題目】如圖,要測量一幢樓CD的高度,在地面上A點測得樓CD的頂部C的仰角為30°,向樓前進(jìn)50m到達(dá)B點,又測得點C的仰角為60°. 求這幢樓CD的高度(結(jié)果保留根號).
【答案】該幢樓CD的高度為25m .
【解析】試題分析:根據(jù)題意得出的度數(shù),進(jìn)而求出,進(jìn)而利用求出即可.
試題解析:依題意,有
∵
∴
∴
在中, (m),
∴ 該幢樓CD的高度為25m .
【題型】解答題
【結(jié)束】
23
【題目】如圖,正方形ABCD中,E是BD上一點,AE的延長線交CD于F,交BC的延長線于G,M是FG的中點.
(1)求證:① ∠1=∠2;② EC⊥MC.
(2)試問當(dāng)∠1等于多少度時,△ECG為等腰三角形?請說明理由.
【答案】(1)①證明見解析;②證明見解析;(2)當(dāng)∠1=30°時,△ECG為等腰三角形. 理由見解析.
【解析】試題分析:(1)①根據(jù)正方形的對角線平分一組對角可得然后利用邊角邊定理證明≌再根據(jù)全等三角形對應(yīng)角相等即可證明;
②根據(jù)兩直線平行,內(nèi)錯角相等可得 再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得然后據(jù)等邊對等角的性質(zhì)得到,所以 然后根據(jù)即可證明 從而得證;
(2)根據(jù)(1)的結(jié)論,結(jié)合等腰三角形兩底角相等 然后利用三角形的內(nèi)角和定理列式進(jìn)行計算即可求解.
試題解析:(1)證明:①∵四邊形ABCD是正方形,
∴∠ADE=∠CDE,AD=CD,
在△ADE與△CDE,
∴△ADE≌△CDE(SAS),
∴∠1=∠2,
②∵AD∥BG(正方形的對邊平行),
∴∠1=∠G,
∵M是FG的中點,
∴MC=MG=MF,
∴∠G=∠MCG,
又∵∠1=∠2,
∴∠2=∠MCG,
∵
∴
∴EC⊥MC;
(2)當(dāng)∠1=30°時, 為等腰三角形. 理由如下:
∵要使為等腰三角形,必有
∴
∵
∴
∴
∴∠1=30°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】擲一枚質(zhì)地均勻的正方形骰子,骰子的六面分別標(biāo)有1到6的點數(shù),那么擲兩次的點數(shù)之和等于5的概率是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴5元,用360元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價格各是多少元?
(2)若商店計劃購買這兩種商品共40件,且投入的經(jīng)費不超過1150元,那么,最多可購買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,點E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求證:AC=CD;
(2)若∠ACB=30°,∠D=45°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E是BD上一點,AE的延長線交CD于F,交BC的延長線于G,M是FG的中點.
(1)求證:① ∠1=∠2;② EC⊥MC.
(2)試問當(dāng)∠1等于多少度時,△ECG為等腰三角形?請說明理由.
【答案】(1)①證明見解析;②證明見解析;(2)當(dāng)∠1=30°時,△ECG為等腰三角形. 理由見解析.
【解析】試題分析:(1)①根據(jù)正方形的對角線平分一組對角可得然后利用邊角邊定理證明≌再根據(jù)全等三角形對應(yīng)角相等即可證明;
②根據(jù)兩直線平行,內(nèi)錯角相等可得 再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得然后據(jù)等邊對等角的性質(zhì)得到,所以 然后根據(jù)即可證明 從而得證;
(2)根據(jù)(1)的結(jié)論,結(jié)合等腰三角形兩底角相等 然后利用三角形的內(nèi)角和定理列式進(jìn)行計算即可求解.
試題解析:(1)證明:①∵四邊形ABCD是正方形,
∴∠ADE=∠CDE,AD=CD,
在△ADE與△CDE,
∴△ADE≌△CDE(SAS),
∴∠1=∠2,
②∵AD∥BG(正方形的對邊平行),
∴∠1=∠G,
∵M是FG的中點,
∴MC=MG=MF,
∴∠G=∠MCG,
又∵∠1=∠2,
∴∠2=∠MCG,
∵
∴
∴EC⊥MC;
(2)當(dāng)∠1=30°時, 為等腰三角形. 理由如下:
∵要使為等腰三角形,必有
∴
∵
∴
∴
∴∠1=30°.
【題型】解答題
【結(jié)束】
24
【題目】如圖,已知拋物線經(jīng)過原點O和點A,點B(2,3)是該拋物線對稱軸上一點,過點B作BC∥x軸交拋物線于點C,連結(jié)BO、CA,若四邊形OACB是平行四邊形.
(1)① 直接寫出A、C兩點的坐標(biāo);② 求這條拋物線的函數(shù)關(guān)系式;
(2)設(shè)該拋物線的頂點為M,試在線段AC上找出這樣的點P,使得△PBM是以BM為底邊的等腰三角形并求出此時點P的坐標(biāo);
(3)經(jīng)過點M的直線把□ OACB的面積分為1:3兩部分,求這條直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與x軸,y軸分別交于A,B兩點,點A關(guān)于直線的對稱點為點C.
(1)求點C的坐標(biāo);
(2)若拋物線經(jīng)過A,B,C三點,求該拋物線的表達(dá)式;
(3)若拋物線 經(jīng)過A,B兩點,且頂點在第二象限,拋物線與線段AC有兩個公共點,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,若AB=CD.
(1)圖①中有 對全等三角形,并把它們寫出來 ;
(2)求證:BG=DG,AG=CG;
(3)若將△ABF的邊AF沿GA方向移動變?yōu)閳D②時,其余條件不變,第(2)題中的結(jié)論是否成立,如果成立,請予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片,第1次剪成四個大小形狀一樣的小正方形,第2次將其中的一個小正方形再按同樣的方法剪成四個小正方形,然后再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進(jìn)行下去,如果共剪次,則可剪出 個正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com