【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類知識(shí)
的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.
(1)本次調(diào)查的學(xué)生共有__________人,估計(jì)該校1200 名學(xué)生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
【答案】(1)50,360;(2)
【解析】
試題分析:(1)根據(jù)圖示,可由非常了解的人數(shù)和所占的百分比直接求解總?cè)藬?shù),然后根據(jù)求出不了解的百分比估計(jì)即可;
(2)根據(jù)題意畫出樹狀圖,然后求出總可能和“一男一女”的可能,再根據(jù)概率的意義求解即可.
試題解析:(1)由餅圖可知“非常了解”為8%,由柱形圖可知(條形圖中可知)“非常了解”為4人,故本次調(diào)查的學(xué)生有(人)
由餅圖可知:“不了解”的概率為,故1200名學(xué)生中“不了解”的人數(shù)為(人)
(2)樹狀圖:
由樹狀圖可知共有12種結(jié)果,抽到1男1女分別為 共8種.
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=16,AD是BC邊上的中線且AD=6,是AD上的動(dòng)點(diǎn),是AC邊上的動(dòng)點(diǎn),則的最小值是( ).
A.B.16C.6D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個(gè)圓形噴水池,在水池中央垂直于水面安裝一個(gè)花形柱子OA,O恰在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,拋物線形狀如圖(1)所示.圖(2)建立直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間的關(guān)系是.請回答下列問題:
(1)柱子OA的高度是多少米?
(2)噴出的水流距水平面的最大高度是多少米?
(3)若不計(jì)其他因素,水池的半徑至少要多少米才能使噴出的水流不至于落在池外?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:已知平行四邊形的面積為,是所在直線上一點(diǎn).
如圖:當(dāng)點(diǎn)與重合時(shí),________;
如圖,當(dāng)點(diǎn)與與均不重合時(shí),________;
如圖,當(dāng)點(diǎn)在(或)的延長線時(shí),________.
拓展推廣:如圖,平行四邊形的面積為,、分別為、延長線上兩點(diǎn),連接、、、,求出圖中陰影部分的面積,并說明理由.
實(shí)踐應(yīng)用:如圖是一平行四邊形綠地,、分別平行于、,它們相交于點(diǎn),,,,,現(xiàn)進(jìn)行綠地改造,在綠地內(nèi)部作一個(gè)三角形區(qū)域(連接、、,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
(1)求證:△OCP∽△PDA;
(2)若△OCP與△PDA的面積比為1:4,求邊AB的長;
(3)如圖2,擦去折痕AO、線段OP,連結(jié)BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.探究:當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF與線段PB有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).
(1)請直接寫出點(diǎn)B、C的坐標(biāo):B( , )、C( , );并求經(jīng)過A、B、C三點(diǎn)的拋物
線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段
AB上(點(diǎn)E是不與A、B兩點(diǎn)重合的動(dòng)點(diǎn)),并使ED所在直線經(jīng)過點(diǎn)C. 此時(shí),EF所在直線與(1)中的拋物線交于第一象限的點(diǎn)M.
①設(shè)AE=x,當(dāng)x為何值時(shí),△OCE∽△OBC;
②在①的條件下探究:拋物線的對(duì)稱軸上是否存在點(diǎn)P使△PEM是等腰三角形,若存在,請求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),且有最小值為﹣2.
(1)求這個(gè)函數(shù)的解析式;
(2)函數(shù)的開口方向、對(duì)稱軸;
(3)當(dāng)y>0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育看臺(tái)側(cè)面的示意圖如圖所示,觀眾區(qū)AC的坡度i為1:2,頂端C離水平地面AB的高度為10m,從頂棚的D處看E處的仰角α=18°30′,豎直的立桿上C、D兩點(diǎn)間的距離為4m,E處到觀眾區(qū)底端A處的水平距離AF為3m.
求:(1)觀眾區(qū)的水平寬度AB;
(2)頂棚的E處離地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,CB=8,AD是△ABC的角平分線,過A、C、D三點(diǎn)的圓與斜邊AB交于點(diǎn)E,連接DE。
(1)求證:AC=AE;
(2)求△ACD外接圓的直徑。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com