已知,在正方形ABCD中,E是CB延長(zhǎng)線(xiàn)上一點(diǎn),且EB=數(shù)學(xué)公式BC,F(xiàn)是AB的中點(diǎn),請(qǐng)你將F點(diǎn)與圖中某一標(biāo)明字母的點(diǎn)連接成線(xiàn)段,使連成的線(xiàn)段與AE相等.并證明這種相等關(guān)系.

解:如圖,連接DF、CF均可得出與AE相等.
證明:∵ABCD為正方形,
∴AD=AB,∠DAF=∠ABE,
∵F為中點(diǎn),BE=BC,
∴AF=BE,
∴△ADF≌△BAF,
∴DF=AE.
同理可得CF=AE.
分析:根據(jù)題意可以知道連接CF、DF均可,可以根據(jù)三角形全等證明.
點(diǎn)評(píng):本題考查了正方形的性質(zhì),以及三角形的全等求解.屬于探究性試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知,在等腰△ABC中,AB=AC,分別延長(zhǎng)BA,CA到D,E點(diǎn),使DA=AB,EA=CA,則四邊形BCDE是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分別為AB、AC、BC邊上的中點(diǎn).若P為AB邊上的一個(gè)動(dòng)點(diǎn),PQ∥BC,且交AC于點(diǎn)Q,以PQ為一邊,在點(diǎn)A的異側(cè)精英家教網(wǎng)作正方形PQMN,記正方形PQMN與矩形EDBF的公共部分的面積為y.
(1)如圖,當(dāng)AP=3cm時(shí),求y的值;
(2)設(shè)AP=xcm,試用含x的代數(shù)式表示y(cm2);
(3)當(dāng)y=2cm2時(shí),試確定點(diǎn)P的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們定義:“四個(gè)頂點(diǎn)都在三角形邊上的正方形是三角形的內(nèi)接正方形”.
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如圖1,四邊形CDEF是△ABC的內(nèi)接正方形,則正方形CDEF的邊長(zhǎng)a1
2
2
;
(2)如圖2,四邊形DGHI是(1)中△EDA的內(nèi)接正方形,則第2個(gè)正方形DGHI的邊長(zhǎng)a2=
4
3
4
3
;繼續(xù)在圖2中的△HGA中按上述方法作第3個(gè)內(nèi)接正方形;…以此類(lèi)推,則第n個(gè)內(nèi)接正方形的邊長(zhǎng)an=
2n
3n-1
2n
3n-1
.(n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所對(duì)的邊分別記作a、b、c.
(1)如圖1,分別以△ABC的三條邊為邊長(zhǎng)向外作正方形,其正方形的面積由小到大分別記作S1、S2、S3,則有S1+S2=S3;
(2)如圖2,分別以△ABC的三條邊為直徑向外作半圓,其半圓的面積由小到大分別記作S1、S2、S3,請(qǐng)問(wèn)S1+S2與S3有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)分別以直角三角形的三條邊為直徑作半圓,如圖3所示,其面積由小到大分別記作S1、S2、S3,根據(jù)(2)中的探索,直接回答S1+S2與S3有怎樣的數(shù)量關(guān)系;
(4)若Rt△ABC中,AC=6,BC=8,求出圖4中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(02)(解析版) 題型:解答題

(2001•天津)已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分別為AB、AC、BC邊上的中點(diǎn).若P為AB邊上的一個(gè)動(dòng)點(diǎn),PQ∥BC,且交AC于點(diǎn)Q,以PQ為一邊,在點(diǎn)A的異側(cè)作正方形PQMN,記正方形PQMN與矩形EDBF的公共部分的面積為y.
(1)如圖,當(dāng)AP=3cm時(shí),求y的值;
(2)設(shè)AP=xcm,試用含x的代數(shù)式表示y(cm2);
(3)當(dāng)y=2cm2時(shí),試確定點(diǎn)P的位置.

查看答案和解析>>

同步練習(xí)冊(cè)答案