【題目】如圖,一艘船由西向東航行,在A處測得北偏東60°方向上有一座燈塔C,再向東續(xù)航行60km到達B處,這時測得燈塔C在北偏東30°方向上,已知在燈塔C的周圍47km內(nèi)有暗礁,問這艘船繼續(xù)向東航行是否安全?
【答案】安全,理由見解析
【解析】
過C作CD⊥AB于點D,根據(jù)方向角的定義及余角的性質(zhì)求出∠BCA=30°,∠ACD=60°,證∠ACB=30°=∠BCA,根據(jù)等角對等邊得出BC=AB=12,然后解Rt△BCD,求出CD即可.
解:過點C作CD⊥AB,垂足為D.如圖所示:
根據(jù)題意可知∠BAC=90°﹣30°=60°,∠DBC=90°﹣30°=60°,
∵∠DBC=∠ACB+∠BAC,
∴∠BAC=30°=∠ACB,
∴BC=AB=60km,
在Rt△BCD中,∠CDB=90°,∠CBD=60°,sin∠CBD=,
∴sin60°=,
∴CD=60×sin60°=60×=30(km)>47km,
∴這艘船繼續(xù)向東航行安全.
科目:初中數(shù)學 來源: 題型:
【題目】某廠為了檢驗甲、乙兩車間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸在176~185mm的產(chǎn)品為合格),隨機各抽取了20個樣品進行檢測,過程如下.
收集數(shù)據(jù)(單位:mm)
甲車間:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180
乙車間:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183
整理數(shù)據(jù)
分析數(shù)據(jù)
車間 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲車間 | 180 | 185 | 180 | 43.1 |
乙車間 | 180 | 180 | 180 | 22.6 |
(1)求,的值;
(2)計算甲車間樣品的合格率;
(3)估計乙車間生產(chǎn)的1000個該款新產(chǎn)品中合格產(chǎn)品有多少個;
(4)結(jié)合上述數(shù)據(jù)信息,請判斷哪個車間生產(chǎn)的新產(chǎn)品更好,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)承接了27000件產(chǎn)品的生產(chǎn)任務,計劃安排甲、乙兩個車間的共50名工人,合作生產(chǎn)20天完成.已知甲、乙兩個車間利用現(xiàn)有設(shè)備,工人的工作效率為:甲車間每人每天生產(chǎn)25件,乙車間每人每天生產(chǎn)30件.
(1)求甲、乙兩個車間各有多少名工人參與生產(chǎn)?
(2)為了提前完成生產(chǎn)任務,該企業(yè)設(shè)計了兩種方案:
方案一 甲車間租用先進生產(chǎn)設(shè)備,工人的工作效率可提高20%,乙車間維持不變.
方案二 乙車間再臨時招聘若干名工人(工作效率與原工人相同),甲車間維持不變.
設(shè)計的這兩種方案,企業(yè)完成生產(chǎn)任務的時間相同.
①求乙車間需臨時招聘的工人數(shù);
②若甲車間租用設(shè)備的租金每天900元,租用期間另需一次性支付運輸?shù)荣M用1500元;乙車間需支付臨時招聘的工人每人每天200元.問:從新增加的費用考慮,應選擇哪種方案能更節(jié)省開支?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:點是軸上一點,將函數(shù)的圖象位于直線右側(cè)部分,以軸為對稱軸翻折,得到新的函數(shù)的圖象,我們稱函數(shù)是函數(shù)的相關(guān)函數(shù),函數(shù)的圖象記作,函數(shù)的圖象未翻折部分記作,圖象和起來記作圖象.
例如:函數(shù)的解析式為,當時,它的相關(guān)函數(shù)的解析式為
(1)如圖,函數(shù)的解析式為,當時,它的相關(guān)函數(shù)的解析式為_________;
(2)函數(shù)的解析式為,當時,圖象上某點的縱坐標為2,求該點的橫坐標;
(3)函數(shù)的解析式為,
①已知點A、B的坐標分別為、,當時,且圖像與線段只有一個共點時,結(jié)合函數(shù)圖象,求的取值范圍;
②若,點是圖象上任意一點,當時,的最大值始終保持不變,求的取值范圍(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將四邊形ABCD放在每個小正方形的邊長為1的網(wǎng)格中,點A.B、C、D均落在格點上.
(Ⅰ)計算AD2+DC2+CB2的值等于_____;
(Ⅱ)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個以AB為一邊的矩形,使該矩形的面積等于AD2+DC2+CB2,并簡要說明畫圖方法(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過,,三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點,使的值最小,求點的坐標;
(3)點為軸上一動點,在拋物線上是否存在一點,使以,,,四點構(gòu)成的四邊形為平行四邊形?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,直線(k為常數(shù))與拋物線交于A,B兩點,且A點在軸右側(cè),P點的坐標為(0,4)連接PA,PB.(1)△PAB的面積的最小值為____;(2)當時,=_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,將△ABC沿直線AB折疊得到△ABD,交⊙O于點D.連接CD交AB于點E,延長BD和CA相交于點P,過點A作AG∥CD交BP于點G.
(1)求證:直線GA是⊙O的切線;
(2)求證:AC2=GDBD;
(3)若tan∠AGB=,PG=6,求cos∠P的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com