【題目】如圖,在矩形ABCD中,AB9,AD6,點O為對角線AC的中點,點EDC的延長線上且CE1.5,連接OE,過點OOFOECB延長線于點F,連接FE并延長交AC的延長線于點G,則_____

【答案】

【解析】

OMCDM,ONBCN,根據(jù)三角形中位線定理分別求出OM、ON,根據(jù)勾股定理求出OE,根據(jù)相似三角形的性質(zhì)求出FN,得到FC的長,證明△GFC∽△GOE,根據(jù)相似三角形的性質(zhì)列出比例式,代入計算得到答案.

解:作OMCDMONBCN,

∵四邊形ABCD為矩形,

∴∠D=90°,∠ABC=90°,

OMAD,ONAB,

∵點OAC的中點,

OM=AD=3,ON=AB=4.5,CM=4.5,CN=3

CE=1.5,

ME=CM+CE=6

RtOME中,OE==3

∵∠MON=90°,∠EOF=90°,

∴∠MOE+NOE=NOF+NOE=90°

∴∠MOE=NOF,又∠OME=ONF=90°,

∴△OME∽△ONF

,即,

解得,FN=9

FC=FN+NC=12,

∵∠FOE=FCE=90°

F、O、CE四點共圓,

∴∠GFC=GOE,又∠G=G,

∴△GFC∽△GOE,

,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品1件和乙商品3件共需240元;購進甲商品2件和乙商品1件共需130元.

1)求甲、乙兩種商品每件的進價分別是多少元?

2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形OABC的頂點Ax軸上,頂點B的坐標為(8,4),點P是對角線OB上一個動點,點D的坐標為(0,﹣2),當DPAP之和最小時,點P的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB是反比例函數(shù)yk0)圖象上的兩點,延長線段ABy軸于點C,且點B為線段AC中點,過點AADx軸于點D,點E為線段OD的三等分點,且OEDE.連接AE、BE,若SABE7,則k的值為( )

A.12B.10C.9D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出:如何將一個長為17,寬為1的長方形經(jīng)過剪一剪,拼一拼,形成一個正方形.(下列所有圖中每個小方格的邊長都為1,剪拼過程中材料均無剩余)

問題探究:我們從長為5,寬為1的長方形入手.

1)如圖是一個長為5,寬為1的長方形.把這個長方形剪一剪、拼一拼后形成正方形,則正方形的面積應為_____________,設正方形的邊長為,則_________;

2)我們可以把有些帶根號的無理數(shù)的被開方數(shù)表示成兩個正整數(shù)平方和的形式,比如.類比此,可以將(1)中的表示成_____________;

3的幾何意義可以理解為:以長度23為直角邊的直角三角形的斜邊長為;類比此,(2)中的可以理解為以長度__________________為直角邊的直角三角形斜邊的長;

4)剪一剪:由(3)可畫出如圖的分割線,把長方形分成五部分;

5)拼一拼:把圖中五部分拼接得到如圖的正方形;

問題解決:仿照上面的探究方法請把圖中長為17,寬為1的長方形剪一剪,在圖中畫出拼成的正方形.(說明:圖的分割過程不作評分要求,只對圖中畫出的最終結(jié)果評分)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小穎綜合與實踐小組學習了三角函數(shù)后,開展了測量本校旗桿高度的實踐活動.他們制訂了測量方案,并利用課余時間完成了實地測量.他們在該旗桿底部所在的平地上,選取兩個不同測點,分別測量了該旗桿頂端的仰角以及這兩個測點之間的距離.為了減小測量誤差,小組在測量仰角的度數(shù)以及兩個測點之間的距離時,都分別測量了兩次并取它們的平均值作為測量結(jié)果,如表是不完整測量數(shù)據(jù).

課題

測量旗桿的高度

成員

組長:小穎,組員:小明,小剛,小英

測量工具

測量角度的儀器,皮尺等

測量示意圖

說明:

線段GH表示學校旗桿,測量角度的儀器的高度ACBD1.62m,測點A,BH在同一水平直線上,A,B之間的距離可以直接測得,且點G,HA,BC,D都在同一豎直平面內(nèi),點C,D,E在同一條直線上,點EGH上.

測量數(shù)據(jù)

測量項目

第一次

第二次

平均值

GCE的度數(shù)

30.6°

31.4°

31°

GDE的度數(shù)

36.8°

37.2°

37°

A,B之間的距離

10.1m

10.5m

   m

1)任務一:完成表格中兩次測點A,B之間的距離的平均值.

2)任務二:根據(jù)以上測量結(jié)果,請你幫助該“綜合與實踐”小組求出學校旗桿GH的高度.(精確到0.1m)(參考數(shù)據(jù):sin31°0.51,cos31°0.86,tan31°0.60sin37°0.60,cos37°0.80tan37°0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,現(xiàn)有下列結(jié)論:①;;.則其中結(jié)論正確的是(

A. ①③ B. ③④ C. ②③ D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020春節(jié)期間,一場突如其來的新冠肺炎疫情牽動著全國人民的心,因疫情發(fā)展迅速,全國口罩防護用品銷售量暴漲、供應緊張,國有疫,我有責,在特殊時期,某集團緊急啟動了應急響應機制,取消了工人休假,與疫情救災相關的口罩、防護服生產(chǎn)線連續(xù)24小時運轉(zhuǎn),將援馳武漢的120萬片口罩和8萬防護服第一時間發(fā)往武漢,其中120萬用科學記數(shù)法表示為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學積極組織學生開展課外閱讀活動,為了解本校學生每周課外閱讀的時間量t(單位:小時),采用隨機抽樣的方法抽取部分學生進行了問卷調(diào)查,調(diào)查結(jié)果按0≤t2,2≤t33≤t4,t≥4分為四個等級,并分別用A、BC、D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:

1)求出x的值,并將不完整的條形統(tǒng)計圖補充完整;

2)若該校共有學生2500人,試估計每周課外閱讀時間量滿足2≤t4的人數(shù);

3)若本次調(diào)查活動中,九年級(1)班的兩個學習小組分別有3人和2人每周閱讀時間量都在4小時以上,現(xiàn)從這5人中任選2人參加學校組織的知識搶答賽,求選出的2人來自不同小組的概率.

查看答案和解析>>

同步練習冊答案