【題目】初三(1)班要從甲、乙、丙、丁這名同學(xué)中隨機(jī)選取名同學(xué)參加學(xué)校畢業(yè)生代表座談會.求下列事件的概率:

)已確定甲參加,另外人恰好選中乙;

)隨機(jī)選取名同學(xué),恰好選中甲和乙.

【答案】;P(恰好選中甲和乙)=

【解析】試題分析:1)由一共有3種等可能性的結(jié)果,其中恰好選中乙同學(xué)的有1種,即可求得答案;(2)先求出全部情況的總數(shù),再求出符合條件的情況數(shù)目,二者的比值就是其發(fā)生的概率.

試題解析:( 已確定甲參加,再從其余3名同學(xué)中隨機(jī)選取1,恰好選中乙同學(xué)的概率是

)隨機(jī)選取兩名同學(xué),可能出現(xiàn)的結(jié)果有種,即(甲,乙)、(甲,丙)、(甲,。、(乙,丙)、(乙,。ⅲū,。,并且它們出現(xiàn)的可能性相等.恰好選中甲和乙(記為事件)的結(jié)果有種,即(甲,乙),所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,在平面直角坐標(biāo)系xOy中,A(0,5),C,0),AOCD為矩形,AE垂直于對角線ODE,點F是點E關(guān)于y軸的對稱點,連AFOF

(1)求AFOF的長;

(2)如圖②,將△OAF繞點O順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△OAF為△OAF′,在旋轉(zhuǎn)過程中,設(shè)AF′所在的直線與線段AD交于點P,與線段OD交于點Q,是否存在這樣的PQ兩點,使△DPQ為等腰三角形?若存在,求出此時點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)村在開展美麗鄉(xiāng)村建設(shè)時,決定購買A,B兩種樹苗對村里的主干道進(jìn)行綠化改造,已知購買A種樹苗3棵,B種樹苗4棵,需要380元;購買A種樹苗5棵,B種樹苗2棵,需要400元.

(1)求購買A,B兩種樹苗每棵各需多少元?

(2)現(xiàn)需購買這兩種樹苗共100棵,要求購買A種樹苗不少于60棵,且用于購買這兩種樹苗的資金不超過5620元.則有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進(jìn)、兩種花草,第一次分別購進(jìn)、 兩種花草棵和棵,共花費元;第二次分別購進(jìn)、兩種花草棵和棵.兩次共花費元(兩次購進(jìn)的、兩種花草價格均分別相同).

、兩種花草每棵的價格分別是多少元?

)若購買、兩種花草共棵,且種花草的數(shù)量少于種花草的數(shù)量的倍,請你給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)

⑴ 作出與△ABC關(guān)于y軸對稱△A1B1C1 , 并寫出三個頂點的坐標(biāo)為:A1),B1),C1);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的分式方程 + = .
(1)若方程的增根為x=2,求m的值;
(2)若方程有增根,求m的值;
(3)若方程無解,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,對角線、交于點,將沿直線翻折,點落在點處,且,連接.求證:

是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.

觀察圖象可知:

①當(dāng)x=﹣3或1時,y1=y2;

②當(dāng)﹣3<x<0或x>1時,y1>y2,即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.

有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.

某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補(bǔ)充完整:

(1)將不等式按條件進(jìn)行轉(zhuǎn)化:

當(dāng)x=0時,原不等式不成立;

當(dāng)x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1>

當(dāng)x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<

(2)構(gòu)造函數(shù),畫出圖象

設(shè)y3=x2+4x﹣1,y4=,在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.

雙曲線y4=如圖2所示,請在此坐標(biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)

(3)確定兩個函數(shù)圖象公共點的橫坐標(biāo)

觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為   ;

(4)借助圖象,寫出解集

結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為( 。
A.8或10
B.
8
C.10
D.6或12

查看答案和解析>>

同步練習(xí)冊答案