解答:解:(1)∵A(-3,0),B(0,3),C(-1,4),
∴AB
2=3
2+3
2=18,AC
2=(-1+3)
2+4
2=20,BC
2=(-1)
2+(4-3)
2=2,
∴AC
2=AB
2+BC
2,
∴△ABC為直角三角形,
故答案為:直角;
(2)∵△ABC為直角三角形,
∴當(dāng)△BDP與△ABC相似時(shí),△BDP為直角三角形,且BD=
,
當(dāng)P點(diǎn)在x軸上時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,0),根據(jù)題意可知P點(diǎn)只能在D點(diǎn)的左側(cè),所以PD=1-x,此時(shí)有兩種情況:
①當(dāng)∠BPD=90°時(shí),則有∠PBD=∠CAB,∴
=
,即
=
,解得x=0,此時(shí)P點(diǎn)為(0,0);
②當(dāng)∠PBD=90°時(shí),則有∠PDB=∠C,∴
=
,即
=
,解得x=-9,此時(shí)P點(diǎn)為(0,0);
當(dāng)P點(diǎn)在y軸上時(shí),設(shè)P點(diǎn)坐標(biāo)為(0,y),根據(jù)題意可知P點(diǎn)只能在B點(diǎn)下方,所以PB=3-y,此時(shí)有兩種情況:
①當(dāng)∠BPD=90°時(shí),則有∠PBD=∠CAB,∴
=
,即
=
,解得y=0,此時(shí)P點(diǎn)為(0,0);
②當(dāng)∠PDB=90°時(shí),則有∠PBD=∠CAB,∴
=
,即
=
,解得y=-
,此時(shí)P點(diǎn)為(0,
);
綜上可知P點(diǎn)的坐標(biāo)為:(0,0)或(-9,0)或(0,-
).
故答案為:(0,0)或(-9,0)或(0,-
).