【題目】如圖,在平行四邊形ABCD中,EAD邊上一點,BE平分ABC,連接CE,已知DE6CE8,AE10

1)求AB的長;

2)求平行四邊形ABCD的面積;

3)求cos∠AEB

【答案】110;(2128;(3

【解析】

1)由平行四邊形的性質及角平分線的定義可得出ABAE,進而再利用題中數(shù)據即可求解結論;

2)易證CED為直角三角形,則CEAD,基礎CE為平行四邊形的高,利用平行四邊形的面積公式計算即可;

3)易證BCE90°,求cos∠AEB的值可轉化為求cos∠EBC的值,利用勾股定理求出BE的長即可.

解:(1四邊形ABCD是平行四邊形,

ADBC,

∴∠AEBCBE,

BE平分ABC

∠ABE=∠CBE,

∴∠ABEAEB

ABAE10,

2四邊形ABCD是平行四邊形.

CDAB10,

CED中,CD10DE6,CE8,

ED2+CE2CD2,

∴∠CED90°

CEAD,

平行四邊形ABCD的面積=ADCE(10+6)×8128;

3四邊形ABCD是平行四邊形.

BCADBCAD,

∴∠BCECED90°AD16,

∴RtBCE中,BE8,

∴cos∠AEBcos∠EBC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,(點位于對稱軸的左側),與軸交于點.為線段上一點,過點作直線軸交圖象于點,(點在點的左側),且.

1)求該二次函數(shù)的對稱軸及的值.

2)將頂點向右平移個單位至點,再過點作直線的對稱點,若點軸上方的圖象上一點且到軸距離為1,求,的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).

請根據以上信息回答:

(1)本次參加抽樣調查的居民有多少人?

(2)將兩幅不完整的圖補充完整;

(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,的角平分線邊于

1)以邊上一點為圓心,過兩點作(不寫作法,保留作圖痕跡),再判斷直線的位置關系,并說明理由;

2)若(1)中的邊的另一個交點為,求線段與劣弧所圍成的圖形面積.(結果保留根號和

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩地相距,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離地的距離與時間的關系,結合圖象,下列結論錯誤的是(

A.是表示甲離地的距離與時間關系的圖象

B.乙的速度是

C.兩人相遇時間在

D.當甲到達終點時乙距離終點還有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACBC,ACB120°,點DAB邊上一點,連接CD,以CD為邊作等邊CDE

1)如圖1,若CDB45°,AB6,求等邊CDE的邊長;

2)如圖2,點DAB邊上移動過程中,連接BE,取BE的中點F,連接CFDF,過點DDGAC于點G

求證:CFDF

如圖3,將CFD沿CF翻折得CF,連接B,直接寫出的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,以點為圓心,適當?shù)拈L為半徑作弧,分別交于點、,再分別以點為圓心,大于的長為半徑作弧,兩弧交于點,作射線,交于點.點在斜邊上,以點為圓心,的長為半徑的圓恰好經過點

1)判斷直線的位置關系,并說明理由;

2)若,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據調查結果繪制了如下兩幅不完整的統(tǒng)計圖.

(1)這次調查的市民人數(shù)為________人,m=________,n=________;

(2)補全條形統(tǒng)計圖;

(3)若該市約有市民100000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小雨、小華、小星暑假到某超市參加社會實踐活動,在活動中他們參加了某種水果的銷售工作,已知該水果的進價為8/千克.他們通過市場調查發(fā)現(xiàn):當銷售單價為10元時,那么每天可售出300千克;銷售單價每上漲1元,每天的銷售量就減少50千克.

(1)求該超市銷售這種水果,每天的銷售量y(千克)與銷售單價x(/千克)之間的函數(shù)關系式;

(2)一段時間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于250千克,則此時該超市銷售這種水果每天獲取的利潤w()最大是多少?

(3)為響應政府號召,該超市決定在暑假期間每銷售1千克這種水果就捐贈a元利潤(a2.5)給希望工程.公司通過銷售記錄發(fā)現(xiàn),當銷售單價不超過13元時,每天扣除捐贈后的日銷售利潤隨銷售單價x(/千克)的增大而增大,求a的取值范圍.

查看答案和解析>>

同步練習冊答案