【題目】(閱讀理解):A,B,C為數(shù)軸上三點(diǎn),若點(diǎn)C到A的距離CA是點(diǎn)C到B的距離CB的2倍,我們就稱點(diǎn)C是(A,B)的好點(diǎn).例如,如圖1,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離CA是2,到點(diǎn)B的距離CB是1,那么點(diǎn)C是(A,B)的好點(diǎn);又如,表示0的點(diǎn)D到點(diǎn)A的距離DA是1,到點(diǎn)B的距離DB是2,那么點(diǎn)D就不是(A,B)的好點(diǎn),但點(diǎn)D是(B,A)的好點(diǎn).
(知識(shí)運(yùn)用):(1)如圖1,表示數(shù)______和_______的點(diǎn)是(A,B)的好點(diǎn);
(2)如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為-2,點(diǎn)N所表示的數(shù)為4.
①表示數(shù)______的點(diǎn)是(M,N)的好點(diǎn);
②表示數(shù)______的點(diǎn)是(N,M)的好點(diǎn);
(3)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為-20,點(diǎn)B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以2個(gè)單位每秒的速度向左運(yùn)動(dòng).當(dāng)t為何值時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?
【答案】(1)1;5;(2)①2或10;②0或;(3)當(dāng)t為10秒或15秒或20秒或50秒或60秒或80秒時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn).
【解析】
(1)設(shè)所求數(shù)為x,可分為:①當(dāng)好點(diǎn)在A、B之間;②當(dāng)好點(diǎn)在B點(diǎn)右邊,根據(jù)好點(diǎn)的定義,列出方程,解方程即可;
(2)①與(1)同理,可分為好點(diǎn)在M、N之間和N的右邊,兩種情況進(jìn)行計(jì)算即可;
②與(1)同理,可分為好點(diǎn)在M、N之間和點(diǎn)M的左邊,兩種情況進(jìn)行計(jì)算即可;
(3)根據(jù)好點(diǎn)的定義可知分五種情況:①P為(A,B)的好點(diǎn);②P為(B,A)的好點(diǎn);③點(diǎn)B是(A、P)的好點(diǎn);④點(diǎn)A是(B,P)的好點(diǎn);⑤點(diǎn)A是(P,B)的好點(diǎn);設(shè)點(diǎn)P表示的數(shù)為n,根據(jù)好點(diǎn)的定義列出方程,進(jìn)而得出t的值.
解:(1)設(shè)所求數(shù)為x,則
①當(dāng)好點(diǎn)在A、B之間時(shí),有:,解得:;
②當(dāng)好點(diǎn)在B的右邊時(shí),有:,解得:;
∴表示數(shù)1和數(shù)5的點(diǎn)是(A,B)的好點(diǎn);
故答案為:1;5.
(2)①設(shè)所求數(shù)為y,則
當(dāng)好點(diǎn)在M、N之間時(shí),有:,解得:;
當(dāng)好點(diǎn)在N的右邊時(shí),有:,解得:;
∴表示數(shù)2或10的點(diǎn)是(M,N)的好點(diǎn);
故答案為:2或10;
②設(shè)所求數(shù)為z,則
當(dāng)好點(diǎn)在M、N之間時(shí),有:,解得:;
當(dāng)好點(diǎn)在M的左邊時(shí),有:,解得:;
∴表示數(shù)0或的點(diǎn)是(N,M)的好點(diǎn);
故答案為:0或;
(3)設(shè)點(diǎn)P表示的數(shù)為n,則
①P為(A,B)的好點(diǎn)時(shí),有:,
解得:,則秒;
②P為(B,A)好點(diǎn)時(shí),有兩種情況:
當(dāng)點(diǎn)P在A、B之間時(shí),有:,
解得:,則秒;
當(dāng)點(diǎn)P在A點(diǎn)左邊時(shí),有:,
解得:,則秒;
③點(diǎn)B是(A、P)的好點(diǎn)時(shí),有:,
解得:,則秒;
④點(diǎn)A是(B,P)的好點(diǎn)時(shí),有:,
解得:,則秒;
⑤點(diǎn)A是(P,B)的好點(diǎn)時(shí),有:,
解得:,則秒.
綜合上述,當(dāng)t為10秒或15秒或20秒或50秒或60秒或80秒時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在口ABCD中,點(diǎn)E、F是對(duì)角線BD上的兩點(diǎn),且BF=DE,連接AE、CF.
.求證:AE//CF.
【答案】證明見(jiàn)解析
【解析】試題分析:根據(jù)平行四邊形的性質(zhì)可得AD=CB,∠ADE=∠CBF,利用SAS判定△ADE≌△CBF,根據(jù)全等三角形的性質(zhì)即可得∠AED=∠BFC,所以AE∥CF.
試題解析:
∵四邊形ABCD是平行四邊形,
∴AD=CB,AD∥CB,
∴∠ADE=∠CBF,
又∵DE=BF,
∴△ADE≌△CBF,
∴∠AED=∠BFC,
∴AE∥CF.
【題型】解答題
【結(jié)束】
22
【題目】如圖,已知是 的直徑,CD與 相切于C, .
(1)求證:BC 是的平分線.
(2)若DC=8, 的半徑OA=6,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下面給出的數(shù)軸,解答下面的問(wèn)題:
(1)請(qǐng)你根據(jù)圖中A,B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù)A: B: ;
(2)觀察數(shù)軸,與點(diǎn)A的距離為的點(diǎn)表示的數(shù)是: ;
(3)若將數(shù)軸折疊,使得點(diǎn)與0表示的點(diǎn)重合,則B點(diǎn)與數(shù) 表示的點(diǎn)重合;
(4)若數(shù)軸上M、N兩點(diǎn)之間的距離為2019(M在N的左側(cè)),且M、N兩點(diǎn)經(jīng)過(guò)(3)中折疊后互相重合,則、兩點(diǎn)表示的數(shù)分別是:M: ,N: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正方形紙片ABCD的邊長(zhǎng)為2,翻折∠B、∠D,使兩個(gè)直角的頂點(diǎn)重合于對(duì)角線BD上一點(diǎn)P、EF、GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:①當(dāng)x=1時(shí),點(diǎn)P是正方形ABCD的中心;②當(dāng)x=時(shí),EF+GH>AC;③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是3;④當(dāng)0<x<2時(shí),六邊形AEFCHG周長(zhǎng)的值不變.其中正確的選項(xiàng)是( )
A. ①③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,B,P,A,C是圓上的點(diǎn),PB= PC, PD⊥CD,CD交⊙O于A,若AC=AD,PD =,sin∠PAD =,則△PAB的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張平行四邊形紙片ABCD中,畫一個(gè)菱形,甲、乙兩位同學(xué)的畫法如下:甲:以B,A為圓心,AB長(zhǎng)為半徑作弧,分別交BC,AD于點(diǎn)E,F,則四邊形ABEF為菱形;乙:作∠A,∠B的平分線AE,BF,分別交BC于點(diǎn)E,交AD于點(diǎn)F,則四邊形ABEF是菱形;關(guān)于甲、乙兩人的畫法,下列判斷正確的是( 。
A. 僅甲正確B. 僅乙正確
C. 甲、乙均正確D. 甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方法感悟:
(1)如圖①,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長(zhǎng)最?若存在,求出它周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
問(wèn)題解決:
(2)如圖②,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個(gè)面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點(diǎn)H在矩形ABCD內(nèi)部或邊上時(shí),才有可能裁出符合要求的部件,試問(wèn)能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積,并寫出在以B為坐標(biāo)原點(diǎn),直線BC為x軸,直線BA為y軸的坐標(biāo)系中,點(diǎn)H的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動(dòng).設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).
(1)AC=__cm,BC=__cm;
(2)當(dāng)t為何值時(shí),AP=PQ;
(3)當(dāng)t為何值時(shí),PQ=1cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料并回答問(wèn)題
觀察:有理數(shù)-2和-4在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離是,有理數(shù)1和-3在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離是
歸納:有理數(shù)a、b在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)A.B之間的距離是,反之,表示有理數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)A.B之間的距離,稱之為絕對(duì)值的幾何意義
應(yīng)用:
(1)如果表示-1的點(diǎn)A和表示x點(diǎn)B之間的距離是2,那么x為________;
(2)方程的解為________;
(3)小松同學(xué)在解方程時(shí),利用絕對(duì)值的幾何意義分析得到,該方程的左邊表示在數(shù)軸上x對(duì)應(yīng)點(diǎn)到1和-2對(duì)應(yīng)點(diǎn)的距離之和,而當(dāng)時(shí),取到它的最小值3,即為1和-2對(duì)應(yīng)的點(diǎn)的距離.由方程右邊的值為5可知,滿足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊,若x的對(duì)應(yīng)點(diǎn)在1的右邊,利用數(shù)軸分析可以看出;同理,若x的對(duì)應(yīng)點(diǎn)在-2的左邊,可得;故原方程的解是或;參考小松的解答過(guò)程,求方程的解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com