【題目】在生活中,人們經(jīng)常通過一些標(biāo)志性建筑確定位置,在數(shù)學(xué)中往往也是這樣.
(1)將正整數(shù)如圖1的方式進(jìn)行排列:
小明同學(xué)通過仔細(xì)觀察,發(fā)現(xiàn)每一行第一列的數(shù)字有一定的規(guī)律,所以每一行第一列的數(shù)字可以作為標(biāo)志數(shù),于是他認(rèn)為第七行第一列的數(shù)字是 ,第7行、第5列的數(shù)字是 .
(2)方法應(yīng)用
觀察下面一列數(shù):1,﹣2,3,﹣4,5,﹣6,7,…并將這列數(shù)按照如圖2方式進(jìn)行排列:
按照上述方式排列下去,
問題1:第10行從左邊數(shù)第9個(gè)數(shù)是 ;
問題2:第n行有 個(gè)數(shù);(用含n的代數(shù)式表示)
問題3:數(shù)字2019在第 行,從左邊數(shù)第 個(gè)數(shù).
【答案】(1)49,45;(2)﹣90;2n﹣1;45,83.
【解析】
(1)找出規(guī)律第n行第一列的數(shù)字為n2,即可得出結(jié)果;(2)找出規(guī)律每一行最末的數(shù)字的絕對(duì)值是行數(shù)的平分,所有數(shù)取絕對(duì)值后是連續(xù)的正整數(shù),所有數(shù)中奇數(shù)為正整數(shù)、偶數(shù)為負(fù)整數(shù);問題1:第9行最末的數(shù)字的絕對(duì)值是81,第10行從左邊數(shù)第9個(gè)數(shù)的絕對(duì)值是81+9=90,因偶數(shù)為負(fù)整數(shù),故第10行從左邊數(shù)第9個(gè)數(shù)是﹣90;問題2:由每行數(shù)的個(gè)數(shù)為1,3,5,7…;則第n行有2n﹣1個(gè)數(shù);問題3:由2019=442+83,即可得出結(jié)果.
解:(1)∵每一行第一列的數(shù)字為該行的平分,
即第n行第一列的數(shù)字為n2,
∴第七行第一列的數(shù)字是:72=49,
第5列的數(shù)字是:49﹣4=45,
故答案為:49,45;
(2)由題意得:每一行最末的數(shù)字的絕對(duì)值是行數(shù)的平分,所有數(shù)取絕對(duì)值后是連續(xù)的正整數(shù),所有數(shù)中奇數(shù)為正整數(shù)、偶數(shù)為負(fù)整數(shù),每行數(shù)的個(gè)數(shù)為:1,3,5,7…;
問題1:∵第9行最末的數(shù)字的絕對(duì)值是81,
∴第10行從左邊數(shù)第9個(gè)數(shù)的絕對(duì)值是81+9=90,
∵偶數(shù)為負(fù)整數(shù),
∴第10行從左邊數(shù)第9個(gè)數(shù)是﹣90;
問題2:∵每行數(shù)的個(gè)數(shù)為:1,3,5,7…;
∴第n行有2n﹣1個(gè)數(shù);
問題3:∵2019=442+83,
∴數(shù)字2019在第45行,從左邊數(shù)第83個(gè)數(shù);
故答案為:﹣90;2n﹣1;45,83.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察思考:如圖,線段AB上有兩個(gè)點(diǎn)C、D,請(qǐng)分別寫出以點(diǎn)A、B、C、D為端點(diǎn)的線段,并計(jì)算圖中共有多少條線段;
(2)模型構(gòu)建:如果線段上有m個(gè)點(diǎn)(包括線段的兩個(gè)端點(diǎn)),則該線段上共有多少條線段?請(qǐng)說明你結(jié)論的正確性;
(3)拓展應(yīng)用:某班45名同學(xué)在畢業(yè)后的一次聚會(huì)中,若每?jī)扇宋?/span>1次手問好,那么共握多少次手?
請(qǐng)將這個(gè)問題轉(zhuǎn)化為上述模型,并直接應(yīng)用上述模型的結(jié)論解決問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y=﹣x+1交y軸于點(diǎn)B,交x軸于點(diǎn)A,拋物線y=﹣ x2+bx+c經(jīng)過點(diǎn)B,與直線y=﹣x+1交于點(diǎn)C(4,﹣2).
(1)求拋物線的解析式;
(2)如圖,橫坐標(biāo)為m的點(diǎn)M在直線BC上方的拋物線上,過點(diǎn)M作ME∥y軸交直線BC于點(diǎn)E,以ME為直徑的圓交直線BC于另一點(diǎn)D,當(dāng)點(diǎn)E在x軸上時(shí),求△DEM的周長(zhǎng).
(3)將△AOB繞坐標(biāo)平面內(nèi)的某一點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90°,得到△A1O1B1,點(diǎn)A,O,B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1,O1,B1,若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,請(qǐng)直接寫出點(diǎn)A1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點(diǎn),OM=3,∠OBC和∠OCB互余,求DG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】共享單車被譽(yù)為“新四大發(fā)明”之一,如圖1所示是某公司2017年向信陽市場(chǎng)提供一種共享自行車的實(shí)物圖,車架檔AC與CD的長(zhǎng)分別為45cm,60cm,AC⊥CD,座桿CE的長(zhǎng)為20cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車架檔AD的長(zhǎng);
(2)求車座點(diǎn)E到車架檔AB的距離.(結(jié)果精確到1cm,參考數(shù)據(jù):sin75°=0.9659,cos75°=0.2588,tan75°=3.7321)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購(gòu)進(jìn)A、B兩種商品共100件,花費(fèi)3100元,其進(jìn)價(jià)和售價(jià)如下表;
(1)A、B兩種商品分別購(gòu)進(jìn)多少件?
(2)兩種商品售完后共獲取利潤(rùn)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠BOC=36°.
(1)若OD平分∠AOC,∠DOE=90°,如圖(a)所示,求∠AOE的度數(shù):
(2)若∠AOD=∠AOC,∠DOE=60°,如圖(b)所示,求∠AOE的度數(shù):
(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n為正整數(shù)),如圖(c)所示,請(qǐng)用n含的代數(shù)式表示∠AOE的度數(shù)__________(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是直角梯形,AB=18cm,CD=15cm,AD=6cm,點(diǎn)P從B點(diǎn)開始,沿BA邊向點(diǎn)A以1cm/s的速度移動(dòng),點(diǎn)Q從D點(diǎn)開始,沿DC邊向點(diǎn)C以2cm/s的速度移動(dòng),如果P、Q分別從B、D同時(shí)出發(fā),P、Q有一點(diǎn)到達(dá)終點(diǎn)時(shí)運(yùn)動(dòng)停止,設(shè)移動(dòng)時(shí)間為t.
(1)t為何值時(shí)四邊形PQCB是平行四邊形?
(2)t為何值時(shí)四邊形PQCB是矩形?
(3)t為何值時(shí)四邊形PQCB是等腰梯形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P1是一塊邊長(zhǎng)為1的正方形紙板,在P1的右上端剪去一個(gè)邊長(zhǎng)為的正方形后得到圖形P2,然后依次剪去一個(gè)更小的正方形(其邊長(zhǎng)為前一個(gè)被剪去的正方形邊長(zhǎng)的一半)得到圖形P3、P4、P5…,記紙板Pn的面積為Sn,則Sn﹣Sn+1的值為( )
A.()nB.()nC.()n+1D.()2n﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com