【題目】如圖,⊙O的直徑FD⊥弦AB于點(diǎn)H,E是上一動(dòng)點(diǎn),連結(jié)FE并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)C,AB=8,HD=2.
(1)求⊙O的直徑FD;
(2)在E點(diǎn)運(yùn)動(dòng)的過程中,EFCF的值是否為定值?若是,求出其定值;若不是,請(qǐng)說明理由;
(3)當(dāng)E點(diǎn)運(yùn)動(dòng)到的中點(diǎn)時(shí),連接AE交DF于點(diǎn)G,求△FEA的面積.
【答案】(1)DF=10;(2)是,EFCF=80;(3)S△FEA=30.
【解析】分析:(1)連接OA,由垂徑定理得到AH=AB=4,設(shè)OA=x,在Rt△OAH中,根據(jù)勾股定理列方程即可得到結(jié)論;(2)根據(jù)垂徑定理得到,根據(jù)圓周角定理得到∠BAF=∠AEF,推出△FAE∽△FCA,根據(jù)相似三角形的性質(zhì)得到,推出AF=EFCF,代入數(shù)據(jù)即可得到結(jié)論;(3)連接OE,由E點(diǎn)是的中點(diǎn),得到∠FAE=45°,∠EOF=90°,于是得到∠EOH=∠AHG,推出△OGE∽△HGA,根據(jù)相似三角形的性質(zhì)得到,求得OG= ,得到FG=OF+OG=,根據(jù)三角形的面積公式即可得到結(jié)論.
本題解析:(1)連接OA,∵直徑FD⊥弦AB于點(diǎn)H,∴AH=AB=4,設(shè)OA=x,
在Rt△OAH中,AO2=AH2+,即x2=42+,∴x=5,
∴DF=2OA=10;
(2)是,
∵直徑FD⊥弦AB于點(diǎn)H,∴ ,∴∠BAF=∠AEF,
∵∠AFE=∠CFA,∴△FAE∽△FCA,∴,∴AF2=EFCF,
在Rt△AFH中,AF2=AH2+FH2=44+82=80,
∴EFCF=80;
(3)連接OE,∵E點(diǎn)是 的中點(diǎn),∴∠FAE=45°,∠EOF=90°,
∴∠EOH=∠AHG,∵∠OGE=∠HGA,∴△OGE∽△HGA,
∴,即=,∴OG=,∴FG=OF+OG=,
∴S△FEA=S△EFG+S△AFG=FGOE+FGAH=××(4+5)=30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M是線段AC的中點(diǎn),N是線段BC的中點(diǎn).
(1)如果AC=8cm,BC=6cm,求MN的長(zhǎng).
(2)如果AM=5cm,CN=2cm,求線段AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“4000輛自行車、187個(gè)服務(wù)網(wǎng)點(diǎn)”,臺(tái)州市區(qū)現(xiàn)已實(shí)現(xiàn)公共自行車服務(wù)全覆蓋,為人們的生活帶來了方便.圖①是公共自行車的實(shí)物圖,圖②是公共自行車的車架示意圖,點(diǎn)A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.
(1)求AD的長(zhǎng);
(2)求點(diǎn)E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地間的距離為448千米,一列慢車從A站出發(fā),每小時(shí)行駛60千米,一列快車從B站出發(fā),每小時(shí)行駛80千米.問:
(1)兩車同時(shí)出發(fā),相向而行,出發(fā)后多長(zhǎng)時(shí)間相遇?
(2)兩車相向而行,慢車先開28分鐘,那么快車開出多長(zhǎng)時(shí)間后兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列長(zhǎng)度的四根木棒中,能與3cm和9cm的兩根木棒圍成一個(gè)三角形的是( )
A.9cm
B.6cm
C.3cm
D.12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+4分別交x軸,y軸于點(diǎn)A,C,點(diǎn)D(m,2)在直線AC上,點(diǎn)B在x軸正半軸上,且OB=3OC.點(diǎn)E是y軸上任意一點(diǎn)記點(diǎn)E為(0,n).
(1)求直線BC的關(guān)系式;
(2)連結(jié)DE,將線段DE繞點(diǎn)D按順時(shí)針旋轉(zhuǎn)90°得線段DG,作正方形DEFG,是否存在n的值,使正方形DEFG的頂點(diǎn)F落在△ABC的邊上?若存在,求出所有的n值并直接寫出此時(shí)正方形DEFG與△ABC重疊部分的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要使多項(xiàng)式6x+2y﹣3+2ky+4k不含y的項(xiàng),則k的值是( 。
A. 0B. 1C. ﹣1D. 2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com