【題目】如圖,在平面直角坐標(biāo)系中,將三角形ABC向左平移至點(diǎn)B與原點(diǎn)重合,得三角形A′OC′.
(1)直接寫出三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)A B C ;
(2)畫出三角形A′OC′;
(3)求三角形ABC的面積;
(4)直接與出A′C′與y軸交點(diǎn)的坐標(biāo) .
【答案】(1)(2,2),(3,0),(5,4);(2)見解析;(3)4;(4)(0,)
【解析】
(1)利用第一象限點(diǎn)的坐標(biāo)特征寫出A、B、C三點(diǎn)的坐標(biāo);
(2)利用點(diǎn)平移的規(guī)律寫出平移后A′、C′點(diǎn)的坐標(biāo),然后順次連接點(diǎn)A′、O、C′即可;
(3)用一個(gè)矩形的面積分別減去三個(gè)直角三角形的面積可計(jì)算出△ABC的面積;
(4)先利用待定系數(shù)法求出直線A′C′的解析式,然后計(jì)算自變量為0所對應(yīng)的自變量的值,從而得到直線A′C′與y軸交點(diǎn)的坐標(biāo).
解:(1)A、B、C點(diǎn)的坐標(biāo)為(2,2),(3,0),(5,4);
(2)如圖,三角形A′OC′為所作;
(3)三角形ABC的面積=3×4﹣ ×2×1﹣×2×3﹣×2×4=4;
(4)A′(﹣1,2),C′(2,4),
設(shè)直線A′C′的解析式為y=kx+b,
把A′(﹣1,2),C′(2,4)代入得 ,解得 ,
∴直線A′C′的解析式為y= x+ ,
當(dāng)x=0時(shí),y= x+ = ,
∴直線A′C′與y軸的交點(diǎn)坐標(biāo)為(0, ).
故答案為:(1)(2,2),(3,0),(5,4);(2)見解析;(3)4;(4)(0,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅星中學(xué)計(jì)劃組織“春季研修活動,活動組織負(fù)責(zé)人從公交公司了解到如下租車信息:
車型 | ||
載客量(人/輛) | ||
租金(元/輛) |
校方從實(shí)際情況出發(fā),決定租用、型客車共輛,而且租車費(fèi)用不超過元。
(1)請為校方設(shè)計(jì)可能的租車方案;
(2)在(1)的條件下,校方根據(jù)自愿的原則,統(tǒng)計(jì)發(fā)現(xiàn)有人參加,請問校方應(yīng)如何租車,且又省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:y=kx+4 與x軸、y軸分別交于A,B,∠OAB=30°,點(diǎn)P在x軸上,⊙P與l相切,當(dāng)P在線段OA上運(yùn)動時(shí),使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是( )
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)為A、B分別在y軸正半軸、x軸負(fù)半軸上,直線CD分別交x軸正半軸、y軸負(fù)半軸于點(diǎn)C、D,且AB∥CD.
(1)如圖1,若點(diǎn)A(0,a)和點(diǎn)B(b,0)的坐標(biāo)滿足
。┲苯訉懗a、b的值,a=_____,b=_____;
ⅱ)把線段AB平移,使B點(diǎn)的對應(yīng)點(diǎn)E到x軸距離為1,A點(diǎn)的對應(yīng)點(diǎn)F到y軸的距離為2,且EF與兩坐標(biāo)軸沒有交點(diǎn),則F點(diǎn)的坐標(biāo)為_____;
(2)若G是CD延長線上一點(diǎn)DP平分∠ADG,BH平分∠ABO,BH的反向延長線交DP于P(如圖2),求∠HPD的度數(shù);
(3)若∠BAO=30°,點(diǎn)Q在x軸(不含點(diǎn)B、C)上運(yùn)動,AM平分∠BAQ,QN平分∠AQC,(如圖3)真接出∠BAM與∠NQC滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸為直線x=1,給出下列結(jié)論: ①b2﹣4ac>0;②2a+b=0;③abc>0;④3a+c>0,
則正確的結(jié)論個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△關(guān)于軸對稱的△,并寫出△各頂點(diǎn)的坐標(biāo);
(2)將△向右平移6個(gè)單位,作出平移后的△,并寫出△各頂點(diǎn)的坐標(biāo);
(3)觀察△和△,它們是否關(guān)于某直線對稱?若是,請用粗線條畫出對稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】早晨小欣與媽媽同時(shí)從家里出發(fā),步行與自行車向相反方向的兩地上學(xué)與上班,如圖是他們離家的路程米與時(shí)間分鐘之間的函數(shù)圖象,媽媽騎車走了10分鐘時(shí)接到小欣的電話,立即以原速度返回并前往學(xué)校,若已知小欣步行的速度為50米分鐘,并且媽媽與小欣同時(shí)到達(dá)學(xué)校完成下列問題:
在坐標(biāo)軸兩處的括號內(nèi)填入適當(dāng)?shù)臄?shù)據(jù);
求小欣早晨上學(xué)需要的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=a(x﹣h)2﹣4(a>0)與x軸分別交于原點(diǎn)O、A兩點(diǎn),點(diǎn)A在x軸的正半軸上,頂點(diǎn)為D,直線y= x交拋物線于B點(diǎn),過B作BE∥x軸交拋物線另一點(diǎn)E,交對稱軸于F.
(1)當(dāng)DF=4a時(shí),求BE的長.
(2)如圖2,連AD,連接AD繞點(diǎn)A旋轉(zhuǎn)交直線OB于點(diǎn)G,點(diǎn)D的對應(yīng)點(diǎn)為G,當(dāng)OG=2時(shí),求a的值;
(3)在(2)的條件下,當(dāng)0<a<1時(shí),以O(shè)B為直徑作圓交x軸下方拋物線于點(diǎn)P,求點(diǎn)P坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com