1.如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長(zhǎng)AD到E,且有∠EBD=∠CAB.
(1)求證:BE是⊙O的切線;
(2)若BC=$\sqrt{3}$,AC=5,求圓的直徑AD及切線BE的長(zhǎng).

分析 (1)先根據(jù)等弦所對(duì)的劣弧相等,再結(jié)合∠EBD=∠CAB從而得到∠BAD=∠EBD,最后用直徑所對(duì)的圓周角為直角即可;
(2)利用三角形的中位線先求出OF,再用平行線分線段成比例定理求出半徑R,最后根據(jù)相似求出BE即可.

解答 解:如圖,

連接OB,∵BD=BC,
∴∠CAB=∠BAD,
∵∠EBD=∠CAB,
∴∠BAD=∠EBD,
∵AD是⊙O的直徑,
∴∠ABD=90°,OA=BO,
∴∠BAD=∠ABO,
∴∠EBD=∠ABO,
∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,
∵點(diǎn)B在⊙O上,
∴BE是⊙O的切線,

(2)如圖2,

設(shè)圓的半徑為R,連接CD,
∵AD為⊙O的直徑,
∴∠ACD=90°,
∵BC=BD,
∴OB⊥CD,
∴OB∥AC,
∵OA=OD,
∴OF=$\frac{1}{2}$AC=$\frac{5}{2}$,
∵四邊形ACBD是圓內(nèi)接四邊形,
∴∠BDE=∠ACB,
∵∠DBE=∠ACB,
∴△DBE∽△CAB,
∴$\frac{DB}{AC}=\frac{DE}{BC}$,
∴$\frac{\sqrt{3}}{5}=\frac{DE}{\sqrt{3}}$,
∴DE=$\frac{3}{5}$,
∵∠OBE=∠OFD=90°,
∴DF∥BE,
∴$\frac{OF}{OB}=\frac{OD}{OE}$=$\frac{DF}{BE}$,
∴$\frac{\frac{5}{2}}{R}=\frac{R}{R+\frac{3}{5}}$,
∵R>0,
∴R=3,
∴AD=2R=6,
在Rt△ODF中,OF=$\frac{5}{2}$,OD=R=3,
∴DF=$\sqrt{O{D}^{2}-O{F}^{2}}$=$\frac{\sqrt{11}}{2}$
∵$\frac{OF}{OB}=\frac{DF}{BE}$,
∴BE=$\frac{OB•DF}{OF}$=$\frac{3×\frac{\sqrt{11}}{2}}{\frac{5}{2}}$=$\frac{3\sqrt{11}}{5}$

點(diǎn)評(píng) 此題是切線的判定,主要考查了圓周角的性質(zhì),切線的判定,平行線分線段成比例定理,相似三角形的判定和相似,圓內(nèi)接四邊形的性質(zhì),解本題的關(guān)鍵是作出輔助線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在實(shí)數(shù)$\sqrt{8}$,2π,$\root{3}{-27}$,sin45°中,是有理數(shù)的是( 。
A.$\sqrt{8}$B.C.$\root{3}{-27}$D.sin45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.化簡(jiǎn):$\frac{a-2}{a-1}$•$\frac{{a}^{2}-1}{{a}^{2}-4a+4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)n=$\sqrt{13}$-1,那么n值介于下列哪兩數(shù)之間( 。
A.1與2B.2與3C.3與4D.4與5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.解不等式組$\left\{\begin{array}{l}{6x+15>2(4x+3)}\\{\frac{2x-1}{3}>\frac{1}{2}x-\frac{2}{3}}\end{array}\right.$并把它的解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.解下列不等式組,并將它的解集在數(shù)軸上表示出來(lái).
$\left\{\begin{array}{l}{x-1>2x}\\{\frac{x-1}{3}≤\frac{x+1}{9}}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.對(duì)于一個(gè)矩形ABCD及⊙M給出如下定義:在同一平面內(nèi),如果矩形ABCD的四個(gè)頂點(diǎn)到⊙M上一點(diǎn)的距離相等,那么稱(chēng)這個(gè)矩形ABCD是⊙M的“伴侶矩形”.如圖,在平面直角坐標(biāo)系xOy中,直線l:y=$\sqrt{3}$x-3交x軸于點(diǎn)M,⊙M的半徑為2,矩形ABCD沿直線運(yùn)動(dòng)(BD在直線l上),BD=2,AB∥y軸,當(dāng)矩形ABCD是⊙M的“伴侶矩形”時(shí),點(diǎn)C的坐標(biāo)為($\sqrt{3}$-$\frac{1}{2}$,-$\frac{3\sqrt{3}}{2}$)或($\sqrt{3}$$+\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn),再求值:($\frac{3}{x+1}$-x+1)÷$\frac{{x}^{2}+4x+4}{x+1}$,其中x=$\sqrt{2}$-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.關(guān)于x的函數(shù)y=$\frac{3}{x}$與y=x+1的圖象的交點(diǎn)坐標(biāo)為(a,b),則$\frac{1}-\frac{1}{a}$的值為-$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案