【題目】如圖,在矩形紙片中,,,把沿對(duì)角線折疊,點(diǎn)落在處,交于點(diǎn)。再次折疊,使點(diǎn)與點(diǎn)重合,為折痕,點(diǎn)在上,點(diǎn)在上,交于點(diǎn).
(1)求的值;
(2)求的長(zhǎng).
【答案】(1);(2)的長(zhǎng)為.
【解析】
(1)根據(jù)翻折變換的性質(zhì)可知∠C=∠BAG=90°,PD=AB=CD,∠AGB=∠DGP,故可得出.,可知GD=GB,故AG+GB=AD,設(shè)AG=x,則GB=8-x,在Rt△ABG中利用勾股定理即可求出AG的長(zhǎng),進(jìn)而得出tan∠ABG的值;
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根據(jù)tan∠ABG即可得出EH的長(zhǎng),同理可得HF是△ABD的中位線,故可得出HF的長(zhǎng),由EF=EH+HF即可得出結(jié)論.
(1)證明:∵△BDP由△BDC翻折而成,
∴∠P=∠BAG=90°,PD=AB=CD,∠AGB=∠DGP,
∴∠ABG=∠ADE,
在△ABG與△C′DG中,
∵,
∴△ABG≌△C′DG(AAS);.
.
設(shè),則.
在中,可得.
解得,.
.
(2)易得垂直平分,所以.
由,可得.
,解得.
易得是的中位線,所以.
的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點(diǎn),過點(diǎn)E作EF∥AB交BC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:
四邊形DBFE的面積 ,
△EFC的面積 ,
△ADE的面積 .
探究發(fā)現(xiàn)
(2)在(1)中,若,,DE與BC間的距離為.請(qǐng)證明.
拓展遷移
(3)如圖2,□DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試?yán)茫?/span>2)中的結(jié)論求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李寧準(zhǔn)備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.
(1)他把“□”猜成3,請(qǐng)你解二元一次方程組;
(2)張老師說:“你猜錯(cuò)了”,我看到該題標(biāo)準(zhǔn)答案的結(jié)果x、y是一對(duì)相反數(shù),通過計(jì)算說明原題中“□”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2+4x﹣9=0時(shí),原方程可變形為( 。
A. (x+2)2=1 B. (x+2)2=7 C. (x+2)2=13 D. (x+2)2=19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知拋物線的對(duì)稱軸是直線x=3,且與x軸相交于A,B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè))與y軸交于C點(diǎn) .
(1)求拋物線的解析式和A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P是拋物線上B、C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與B、C重合),則是否存在一點(diǎn)P,使△PBC的面積最大.若存在,請(qǐng)求出△PBC的最大面積;若不存在,試說明理由;
(3)若M是拋物線上任意一點(diǎn),過點(diǎn)M作y軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時(shí),求M點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花店用3600元按批發(fā)價(jià)購(gòu)買了一批花卉.若將批發(fā)價(jià)降低10%,則可以多購(gòu)買該花卉20盆.市場(chǎng)調(diào)查反映,該花卉每盆售價(jià)25元時(shí),每天可賣出25盆.若調(diào)整價(jià)格,每盆花卉每漲價(jià)1元,每天要少賣出1盆.
(1)該花卉每盆批發(fā)價(jià)是多少元?
(2)若每天所得的銷售利潤(rùn)為200元時(shí),且銷量盡可能大,該花卉每盆售價(jià)是多少元?
(3)為了讓利給顧客,該花店決定每盆花卉漲價(jià)不超過5元,問該花卉一天最大的銷售利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com