【題目】如圖,點E, F在直線AC上,DF=BE AFD=CEB,下列條件中不能判斷ADF≌△CBE的是( )

A.D=BB.AD=CBC.AE=CFD.AD// BC

【答案】B

【解析】

已知條件有一角和一邊,可采用ASAAASSAS判定全等,據(jù)此逐項判斷即可.

A. ∠D=∠B,與已知條件組合可用ASA判定△ADF≌△CBE,不符合題意;

B. AD=CB,與已知條件組合為“SSA”,不能判定△ADF≌△CBE,符合題意;

C. AE=CF可得AF=CE,與已知條件組合可用SAS判定△ADF≌△CBE,不符合題意;

D. AD// BC可得∠A=C,與已知條件組合可用AAS判定△ADF≌△CBE,不符合題意;

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點DAC的中點,直角的兩邊分別交AB、BC于點E、F,給出以下結論:①;②;③;④;⑤是等腰直角三角形. 內(nèi)繞頂點D旋轉時(E不與點A、B重合),上述結論始終成立的有____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形ABC中,A、B、C的坐標分別為A(﹣1,2),B(﹣3,﹣2),C1,﹣1),將ABC向上平移3個單位,再向右平移2個單位.

1)作出平移后的A1B1C1,并寫出A1,B1,C1的坐標.

2)求A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,為弦,,

;

點作,交點,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角坐標平面上的,,,且,.若拋物線經(jīng)過、兩點.

的值;

將拋物線向上平移若干個單位得到的新拋物線恰好經(jīng)過點,求新拋物線的解析式;

中的新拋物的頂點點,為新拋物線上點至點之間的一點,以點為圓心畫圖,當軸和直線都相切時,聯(lián)結、,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,且點的坐標為,點坐標為,點軸的負半軸上,拋物線經(jīng)過點和點

,的值;

在拋物線的對稱軸上是否存在點,使得為等腰三角形?若存在,直接寫出點的坐標;若不存在,請說明理由

是線段上的一個動點,過點軸的平行線交拋物線于點,交于點,探究:當點在什么位置時,四邊形是平行四邊形,此時,請判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表為某班學生成績的次數(shù)分配表.已知全班共有人,且眾數(shù)為分,中位數(shù)為分,則之值為________

成績

(分)

次數(shù)

(人)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,,將繞點逆時針旋轉,延長于點

求證:四邊形是矩形;

,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在長方形中,BC=3,動點出發(fā),以每秒1個單位的速度,沿射線方向移動,作關于直線的對稱,設點的運動時間為

1)當P點在線段BC上且不與C點重合時,若直線PB’與直線CD相交于點M,且∠PAM=45°,試求:AB的長

2)若AB=4

①如圖2,當點B’落在AC上時,顯然PCB’是直角三角形,求此時t的值

②是否存在異于圖2的時刻,使得PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由

查看答案和解析>>

同步練習冊答案