分析 (1)設(shè)一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,而最低價(jià)為每只16元,因此得到20-0.1(x-10)=16,解方程即可求解;
(2)由于根據(jù)(1)得到x≤50,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據(jù)已知條件可以得到y(tǒng)與x的函數(shù)關(guān)系式;
(3)首先把函數(shù)變?yōu)閥=-0.1x2+9x=-0.1(x-45)2+202.5,然后可以得到函數(shù)的增減性,再結(jié)合已知條件即可解決問題.
解答 解:(1)設(shè)一次購買x只,
則20-0.1(x-10)=16,
解得:x=50.
答:一次至少買50只,才能以最低價(jià)購買;
(2)當(dāng)10<x≤50時(shí),
y=[20-0.1(x-10)-12]x=-0.1x2+9x,
當(dāng)x>50時(shí),y=(16-12)x=4x;
綜上所述:y=$\left\{\begin{array}{l}{-0.1{x}^{2}+9x(10<x≤50)}\\{4x(x>50)}\end{array}\right.$;
(3)y=-0.1x2+9x=-0.1(x-45)2+202.5,
①當(dāng)10<x≤45時(shí),y隨x的增大而增大,即當(dāng)賣的只數(shù)越多時(shí),利潤更大.
②當(dāng)45<x≤50時(shí),y隨x的增大而減小,即當(dāng)賣的只數(shù)越多時(shí),利潤變。
且當(dāng)x=46時(shí),y1=202.4,
當(dāng)x=50時(shí),y2=200.
y1>y2.
即出現(xiàn)了賣46只賺的錢比賣50只賺的錢多的現(xiàn)象.
當(dāng)x=45時(shí),最低售價(jià)為20-0.1(45-10)=16.5(元),此時(shí)利潤最大.
點(diǎn)評(píng) 本題考查了二次函數(shù)的應(yīng)用.最大銷售利潤的問題常利函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實(shí)際選擇最優(yōu)方案.其中要注意應(yīng)該在自變量的取值范圍內(nèi)求最大值(或最小值),也就是說二次函數(shù)的最值不一定在x=-$\frac{2a}$時(shí)取得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x2-6x+1=0 | B. | 3x2-x-5=0 | C. | x2+x=0 | D. | x2-4x+4=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | AB=12CE | B. | AB=11CE | C. | AB=10CE | D. | AB=9CE |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com