九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐一應(yīng)用——探究的過程:

  (1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m.隧道頂部最高處距地面6.25m,并畫出了隧道截面圖.建立了如圖②所示的直角坐標(biāo)系.請(qǐng)你求出拋物線的解析式.

  (2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全.問該隧道能否讓最寬3m.最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?

  (3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型塑.提出了以下兩個(gè)問題,請(qǐng)予解答:

Ⅰ.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上.頂點(diǎn)A、B落在x軸上.設(shè)矩形ABCD的周長(zhǎng)為,求的最大值。

Ⅱ.如圖④,過原點(diǎn)作一條的直線OM,交拋物線于點(diǎn)M.交拋物線對(duì)稱軸于點(diǎn)N,P為直線OM上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q。問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

解:根據(jù)題意可知:拋物線的頂點(diǎn)坐標(biāo)為(5,6.25),∴設(shè)函數(shù)解析式為y=a(x-5)2+6.25.

又拋物線經(jīng)過原點(diǎn)(0,0),∴0=a(0-5)2+6.25. 解得:a=-

∴函數(shù)解析式為y=-(x-5)2+6.25   (0≤x≤10)

解:,設(shè)并行的兩車為矩形ABCD,∴AB=3×2=6,AD=3.5 

∴A點(diǎn)橫坐標(biāo)為2,代入y=-(x-5)2+6.25

∴y=-(2-5)2+6.25=4>3.5

所以該隧道能讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛

解:設(shè)A點(diǎn)橫坐標(biāo)為m,則AB=10-2m,D(m,

∴矩形ABCD的周長(zhǎng)為l=2(AD+AB)=2(10-2m+)==

∵a=-<0,拋物線開口向下,  ∴當(dāng)m=1,矩形ABCD的周長(zhǎng)l的最大值為

解:存在這樣的點(diǎn)P,使得△PNQ為等腰直角三角形。

直線OM:y=x與對(duì)稱軸的交點(diǎn)N(5,5),與直線段PQ交于點(diǎn)P,顯然當(dāng)Q點(diǎn)縱坐標(biāo)為5時(shí),QN//x軸,∠ONQ=∠NOx=45°,△PQN為等腰直角三角形。

此時(shí),5=,解得:m=5±

∴當(dāng)P(5-,5-)或P(5+,5+)時(shí),△PQN為等腰直角三角形。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某校九年級(jí)(2)班在測(cè)量校內(nèi)旗桿高度的數(shù)學(xué)活動(dòng)中,第一組的同學(xué)設(shè)計(jì)了兩種測(cè)量方案,并根據(jù)測(cè)量結(jié)果填寫了如下《數(shù)學(xué)活動(dòng)報(bào)告》中的一部分.
課題 測(cè)量校內(nèi)旗桿高度
目的 運(yùn)用所學(xué)數(shù)學(xué)知識(shí)及數(shù)學(xué)方法解決實(shí)際問題---測(cè)量旗桿高度
方案 方案一 方案二 方案三




示意圖
精英家教網(wǎng) 精英家教網(wǎng)
測(cè)量工具 皮尺、測(cè)角儀 皮尺、測(cè)角儀
測(cè)量數(shù)據(jù) AM=1.5m,AB=10m
∠α=30°,∠β=60°
AM=1.5m,AB=20m
∠α=30°,∠β=60°
計(jì)算過程(結(jié)
果保留根號(hào))
解: 解:
(1)請(qǐng)你在方案一二中任選一種方案(多選不加分),根據(jù)方案提供的示意圖及相關(guān)數(shù)據(jù)填寫表中的計(jì)算過程、測(cè)量結(jié)果;
(2)請(qǐng)你根據(jù)所學(xué)的知識(shí),再設(shè)計(jì)一種不同于方案一、二的測(cè)量方案三,并完成表格中方案三的所有欄目的填寫.(要求:在示意圖中標(biāo)出所需的測(cè)量數(shù)據(jù)長(zhǎng)度用字母a,b,c…表示,角度用字母α,β,γ…表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校九年級(jí)(2)班在測(cè)量校內(nèi)旗桿高度的數(shù)學(xué)活動(dòng)中,第一組的同學(xué)設(shè)計(jì)了兩種測(cè)量方案,并根據(jù)測(cè)量結(jié)果填寫了如下《數(shù)學(xué)活動(dòng)報(bào)告》中的一部分.
數(shù)學(xué)活動(dòng)報(bào)告
活動(dòng)小組:第一組
活動(dòng)地點(diǎn):學(xué)校操場(chǎng)
活動(dòng)時(shí)間:××××年××月××日年上午9:00
活動(dòng)小組組長(zhǎng):×××
課題 測(cè)量校內(nèi)旗桿高度
目的 運(yùn)用所學(xué)數(shù)學(xué)知識(shí)及數(shù)學(xué)方法解決實(shí)際問題----測(cè)量旗桿高度
方案 方案一 方案二 方案三




示意圖
精英家教網(wǎng) 精英家教網(wǎng)  
測(cè)量工具 皮尺、測(cè)角儀 皮尺、測(cè)角儀  
測(cè)量數(shù)據(jù) AM=1.5m,AB=10m
∠α=30°,∠β=60°
AM=1.5m,AB=20m
∠α=30°,∠β=60°
 
 
計(jì)算過程(結(jié)
果保留根號(hào))
解:
 
 
 
 
解:  
(1)請(qǐng)你在方案一二中任選一種方案(多選不加分),根據(jù)方案提供的示意圖及相關(guān)數(shù)據(jù)填寫表中的計(jì)算過程、測(cè)量結(jié)果;
(2)請(qǐng)你根據(jù)所學(xué)的知識(shí),再設(shè)計(jì)一種不同于方案一、二的測(cè)量方案三,并完成表格中方案三的所有欄目的填寫.(要求:在示意圖中標(biāo)出所需的測(cè)量數(shù)據(jù)長(zhǎng)度用字母a,b,c…表示,角度用字母α,β,γ…表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校九年級(jí)(2)班在測(cè)量校內(nèi)旗桿高度的數(shù)學(xué)活動(dòng)中,第一組的同學(xué)設(shè)計(jì)了兩種測(cè)量方案,并根據(jù)測(cè)量結(jié)果填寫了如下《數(shù)學(xué)活動(dòng)報(bào)告》中的一部分.
數(shù)學(xué)活動(dòng)報(bào)告
活動(dòng)小組:第一組                                              活動(dòng)地點(diǎn):學(xué)校操場(chǎng)
活動(dòng)時(shí)間:××××年××月××日年上午9:00                 活動(dòng)小組組長(zhǎng):×××
課題 測(cè)量校內(nèi)旗桿高度
目的 運(yùn)用所學(xué)數(shù)學(xué)知識(shí)及數(shù)學(xué)方法解決實(shí)際問題--測(cè)量旗桿高度
示意圖
精英家教網(wǎng)
測(cè)量工具 皮尺、測(cè)角儀
測(cè)量數(shù)據(jù): AM=1.5m,AB=10m,∠α=30°,∠β=60°
計(jì)算過程(結(jié)
果保留根號(hào))
解:
測(cè)量結(jié)果 DN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校九年級(jí)(2)班在測(cè)量校內(nèi)旗桿高度的數(shù)學(xué)活動(dòng)中,第一組的同學(xué)設(shè)計(jì)了兩種測(cè)量方案,并根據(jù)測(cè)量結(jié)果填寫了如下《數(shù)學(xué)活動(dòng)報(bào)告》中的一部分.
數(shù)學(xué)活動(dòng)報(bào)告
活動(dòng)小組:第一組
活動(dòng)地點(diǎn):學(xué)校操場(chǎng)
活動(dòng)時(shí)間:××××年××月××日年上午9:00
活動(dòng)小組組長(zhǎng):×××
課題測(cè)量校內(nèi)旗桿高度
目的運(yùn)用所學(xué)數(shù)學(xué)知識(shí)及數(shù)學(xué)方法解決實(shí)際問題----測(cè)量旗桿高度
方案方案一方案二方案三




示意圖
測(cè)量工具皮尺、測(cè)角儀皮尺、測(cè)角儀
測(cè)量數(shù)據(jù)AM=1.5m,AB=10m
∠α=30°,∠β=60°
AM=1.5m,AB=20m
∠α=30°,∠β=60°

計(jì)算過程(結(jié)
果保留根號(hào))
解:



解:
(1)請(qǐng)你在方案一二中任選一種方案(多選不加分),根據(jù)方案提供的示意圖及相關(guān)數(shù)據(jù)填寫表中的計(jì)算過程、測(cè)量結(jié)果;
(2)請(qǐng)你根據(jù)所學(xué)的知識(shí),再設(shè)計(jì)一種不同于方案一、二的測(cè)量方案三,并完成表格中方案三的所有欄目的填寫.(要求:在示意圖中標(biāo)出所需的測(cè)量數(shù)據(jù)長(zhǎng)度用字母a,b,c…表示,角度用字母α,β,γ…表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《解直角三角形》中考題集(35):1.5 解直角三角形的應(yīng)用(解析版) 題型:解答題

某校九年級(jí)(2)班在測(cè)量校內(nèi)旗桿高度的數(shù)學(xué)活動(dòng)中,第一組的同學(xué)設(shè)計(jì)了兩種測(cè)量方案,并根據(jù)測(cè)量結(jié)果填寫了如下《數(shù)學(xué)活動(dòng)報(bào)告》中的一部分.
課題測(cè)量校內(nèi)旗桿高度
目的運(yùn)用所學(xué)數(shù)學(xué)知識(shí)及數(shù)學(xué)方法解決實(shí)際問題---測(cè)量旗桿高度
方案方案一方案二方案三




示意圖
測(cè)量工具皮尺、測(cè)角儀皮尺、測(cè)角儀
測(cè)量數(shù)據(jù)AM=1.5m,AB=10m
∠α=30°,∠β=60°
AM=1.5m,AB=20m
∠α=30°,∠β=60°
計(jì)算過程(結(jié)
果保留根號(hào))
解:解:
(1)請(qǐng)你在方案一二中任選一種方案(多選不加分),根據(jù)方案提供的示意圖及相關(guān)數(shù)據(jù)填寫表中的計(jì)算過程、測(cè)量結(jié)果;
(2)請(qǐng)你根據(jù)所學(xué)的知識(shí),再設(shè)計(jì)一種不同于方案一、二的測(cè)量方案三,并完成表格中方案三的所有欄目的填寫.(要求:在示意圖中標(biāo)出所需的測(cè)量數(shù)據(jù)長(zhǎng)度用字母a,b,c…表示,角度用字母α,β,γ…表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案