【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)D,過(guò)其頂點(diǎn)C作直線CP⊥x軸,垂足為點(diǎn)P,連接AD、BC.
(1)求點(diǎn)A、B、D的坐標(biāo);
(2)若△AOD與△BPC相似,求a的值;
(3)點(diǎn)D、O、C、B能否在同一個(gè)圓上,若能,求出a的值,若不能,請(qǐng)說(shuō)明理由.
【答案】(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當(dāng)a=時(shí),D、O、C、B四點(diǎn)共圓.
【解析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).
(2)根據(jù)(1)中A、B、D的坐標(biāo),得出拋物線對(duì)稱軸x=,AO=a,OD=3a,代入求得頂點(diǎn)C(,-),從而得PB=3- =,PC=;再分情況討論:①當(dāng)△AOD∽△BPC時(shí),根據(jù)相似三角形性質(zhì)得,解得:a= 3(舍去);
②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得 ,解得:a1=3(舍),a2=;
(3)能;連接BD,取BD中點(diǎn)M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點(diǎn)C也在此圓上,則MC=MB,根據(jù)兩點(diǎn)間的距離公式得一個(gè)關(guān)于a的方程,解之即可得出答案.
(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),
∴A(a,0),B(3,0),
當(dāng)x=0時(shí),y=3a,
∴D(0,3a);
(2)∵A(a,0),B(3,0),D(0,3a).∴對(duì)稱軸x=,AO=a,OD=3a,
當(dāng)x= 時(shí),y=- ,
∴C(,-),
∴PB=3-=,PC=
①當(dāng)△AOD∽△BPC時(shí),
∴,
即 ,
解得:a= 3(舍去);
②△AOD∽△CPB,
∴,
即 ,
解得:a1=3(舍),a2= .
綜上所述:a的值為;
(3)能;連接BD,取BD中點(diǎn)M,
∵D、B、O三點(diǎn)共圓,且BD為直徑,圓心為M(,a),
若點(diǎn)C也在此圓上,
∴MC=MB,
∴ ,
化簡(jiǎn)得:a4-14a2+45=0,
∴(a2-5)(a2-9)=0,
∴a2=5或a2=9,
∴a1=,a2=-,a3=3(舍),a4=-3(舍),
∵0<a<3,
∴a=,
∴當(dāng)a=時(shí),D、O、C、B四點(diǎn)共圓.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機(jī)調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計(jì)圖.依據(jù)以下信息解答問(wèn)題:
(1)此次共調(diào)查了多少人?
(2)求“年齡歲”在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.
(1)求m的值及一次函數(shù)解析式;
(2)P是線段AB上的一點(diǎn),連接PC、PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形,,是邊上一動(dòng)點(diǎn),由向運(yùn)動(dòng)(與、不重合),是延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)同時(shí)以相同的速度由向延長(zhǎng)線方向運(yùn)動(dòng)(不與重合),過(guò)作于,連接交于.
(1)證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)是線段的中點(diǎn);
(2)當(dāng)時(shí),求的長(zhǎng);
(3)在運(yùn)動(dòng)過(guò)程中線段的長(zhǎng)是否發(fā)生變化?如果不變,求出線段的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,順次連接矩形各邊的中點(diǎn),得到一個(gè)菱形,如圖①;再順次連接菱形各邊中點(diǎn),得到一個(gè)新的矩形,如圖②;然后順次連接新的矩形各邊中點(diǎn),得到一個(gè)新的菱形,如圖3.如此反復(fù)操作下去,則第2018個(gè)圖形中直角三角形的個(gè)數(shù)有( 。
A.2018個(gè)B.4043個(gè)C.4036個(gè)D.6042個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D、E分別是AB和BC上的點(diǎn).把△ABC沿著直線DE折疊,頂點(diǎn)B對(duì)應(yīng)點(diǎn)是點(diǎn)B′
(1)如圖1,點(diǎn)B′恰好落在線段AC的中點(diǎn)處,求CE的長(zhǎng);
(2)如圖2,點(diǎn)B′落在線段AC上,當(dāng)BD=BE時(shí),求B′C的長(zhǎng);
(3)如圖3,E是BC的中點(diǎn),直接寫(xiě)出AB′的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)
(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)
(測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:1號(hào)探測(cè)氣球從海拔5m處勻速上升,同時(shí),2號(hào)探測(cè)氣球從海拔15m處勻速上升,且兩個(gè)氣球都上升了1h.兩個(gè)氣球所在位置的海拔y(單位:m)與上升時(shí)間x(單位:min)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖中的信息,下列說(shuō)法:
①上升20min時(shí),兩個(gè)氣球都位于海拔25m的高度;
②1號(hào)探測(cè)氣球所在位置的海拔關(guān)于上升時(shí)間x的函數(shù)關(guān)系式是y=x+5(0≤x≤60);
③記兩個(gè)氣球的海拔高度差為m,則當(dāng)0≤x≤50時(shí),m的最大值為15m.
其中,說(shuō)法正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長(zhǎng),分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,求菱形AECF的邊長(zhǎng)和面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com