【題目】已知:1號探測氣球從海拔5m處勻速上升,同時,2號探測氣球從海拔15m處勻速上升,且兩個氣球都上升了1h.兩個氣球所在位置的海拔y(單位:m)與上升時間x(單位:min)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖中的信息,下列說法:
①上升20min時,兩個氣球都位于海拔25m的高度;
②1號探測氣球所在位置的海拔關(guān)于上升時間x的函數(shù)關(guān)系式是y=x+5(0≤x≤60);
③記兩個氣球的海拔高度差為m,則當0≤x≤50時,m的最大值為15m.
其中,說法正確的個數(shù)是( )
A.0B.1C.2D.3
【答案】D
【解析】
根據(jù)一次函數(shù)的圖象和性質(zhì),由兩點坐標分別求出1、2號探測球所在位置的海拔y關(guān)于上升時間x的函數(shù)關(guān)系式,結(jié)合圖象即可判定結(jié)論是否正確.
從圖象可知,上升20min時,兩個氣球都位于海拔25m的高度,故①正確;
1號探測氣球的圖象過 設(shè)=kx+b,代入點坐標可求得關(guān)系式是=x+5(0≤x≤60),同理可求出,2號球的函數(shù)解析式為,故②正確;
利用圖象可以看出,20min后,1號探測氣球的圖象始終在2號探測氣球的圖象的上方,而且都隨著x的增大而增大,所以當x=50時,兩個氣球的海拔高度差m有最大值,此時m=,代入x=50,得m=15,故③正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級五班為了了解同學(xué)們春節(jié)壓歲錢的使用情況,對全班同學(xué)進行了問卷調(diào)查,每個同學(xué)只準選一項.調(diào)查問卷:
A.把壓歲錢積攢起來,準備給爸媽買生日禮物,
B.把壓歲錢積攢起來,準備給同學(xué)買生日禮物,
C.把壓歲錢積攢起來,準備給自己買漂亮衣服,
D.把壓歲錢積攢起來,準備買學(xué)習(xí)用品或課外書,
E.漫無目的,隨便花,
班委會的同學(xué)把調(diào)查結(jié)果進行了統(tǒng)計,并繪制出條形統(tǒng)計圖和扇形統(tǒng)計圖(都不完整),如圖1和圖2所示:
根據(jù)統(tǒng)計圖回答:
(1)該班共有學(xué)生______人.
(2)在扇形統(tǒng)計圖中,標出所占的百分比,并計算所對應(yīng)的圓心角度數(shù).
(3)補全條形統(tǒng)計圖.
(4)根據(jù)以上信息,請你給班同學(xué)就“如何使用壓歲錢?”提出合理建議.(不超過30字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.
(1)求點A、B、D的坐標;
(2)若△AOD與△BPC相似,求a的值;
(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:PC=PF;
(3)若tan∠ABC=,AB=14,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時B到墻底端C的距離為0.7米.如果梯子的頂端沿墻面下滑0.4米,那么點B將向左滑動多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O.
(1)尺規(guī)作圖:以OA、OD為邊,作矩形OAED(不要求寫作法,但保留作圖痕跡);
(2)若在菱形ABCD中,∠BAD=120 °,AD=2,求所作矩形OAED的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=8,BC=16,將矩形紙片沿EF折疊,使點C與點A重合.
(1)判斷△AEF的形狀,并說明理由;
(2)求折痕EF的長度;
(3)如圖2,展開紙片,連接CF,則點E到CF的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且.連接PB,試探究PA,PB,PC滿足的等量關(guān)系.
圖1 圖2
(1)當α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到,連接,如圖1所示.
由≌可以證得是等邊三角形,再由可得∠APC的大小為 度,進而得到是直角三角形,這樣可以得到PA,PB,PC滿足的等量關(guān)系為 ;
(2)如圖2,當α=120°時,請參考(1)中的方法,探究PA,PB,PC滿足的等量關(guān)系,并給出證明;
(3)PA,PB,PC滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.
(1)求證:△ABE≌△BCN;
(2)若N為AB的中點,求tan∠ABE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com