【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過點B的直線折疊,點O恰好落在弧AB上點C處,折痕交OA于點D,則圖中陰影部分的面積為_______ .
【答案】
【解析】
首先連接OC,由折疊的性質(zhì),可得CD=CD,BC=BO,OB=OC,則可得△OBC是等邊三角形,繼而求得OD的長,即可求得△OBD與△BCD的面積,又在扇形OAB中,∠AOB=90°,半徑OA=4,即可求得扇形OAB的面積,繼而求得陰影部分面積.
連接OC交BD于點E.
在扇形AOB中,∠AOB=90°,半徑OA=4.
∴,
根據(jù)折疊的性質(zhì),CD=DO,BC=BO,OB=OC,
∴OB=OC=BC,
即△OBC是等邊三角形,
∴∠CBO=60°,
∴∠DBO=∠CBO=30°,
∵∠AOB=90°,
∴OD=OBtan∠DBO,
∴,
∴整個陰影部分的面積為:.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠病毒(2019-nCoV是一種新的Sarbecovirus亞屬的冠狀病毒,它是一類具有囊膜的正鏈單股RNA病毒,其遺傳物質(zhì)是所有RNA病毒中最大的,也是自然界廣泛存在的一大類病毒,其粒子形狀并不規(guī)則,直徑約60~220nm,平均直徑為100nm(納米).,100nm用科學(xué)記數(shù)法可以表示為( )m.
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進(jìn)、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進(jìn)價、售價如表所示:
()若商場預(yù)計進(jìn)貨款為元,則這兩種臺燈各購進(jìn)多少盞?
()若商場規(guī)定型臺燈的進(jìn)貨數(shù)量不超過型臺燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解停課不停學(xué),期間,同學(xué)們居家學(xué)習(xí)的情況,某校從全校學(xué)生中隨機抽取部分學(xué)生進(jìn)行網(wǎng)絡(luò)問卷調(diào)查,并將調(diào)查結(jié)果分成(:優(yōu),:良,:中,:差)四類.依據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖
(1)這次被調(diào)查的學(xué)生一共有 人,其中(中)等次的男生有 人,表示(差)等次的扇形所對的圓心角的度數(shù)為 度;
(2)若該校約有名學(xué)生,估計全校居家學(xué)習(xí)處于優(yōu)或良(或)等次的學(xué)生有多少人?
(3)為了共同進(jìn)步,劉老師想從被調(diào)查的類和類學(xué)生中分別選取一位同學(xué)進(jìn)行“一對—”幫扶,請用列表法或畫樹形圖的方法求所選的兩位同學(xué)恰好是兩位男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一垂直于水平面的建筑物,某同學(xué)從建筑物底端出發(fā),先沿水平方向向右行走米到達(dá)點再經(jīng)過段坡度(或坡比)為坡長為米的斜坡到達(dá)點然后再沿水平方向向右行走米到達(dá)點均在同一平面內(nèi)).在處測得建筑物頂端的仰角為求建筑物的高度. (參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點是斜邊上一點,且.
(Ⅰ)求的值;
(Ⅱ)過點的與邊相切,切點為的中點,與直線的另一個交點為.
(i)求的半徑;
(ⅱ)連接,試探究與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,,將繞點逆時針旋轉(zhuǎn),得到,連結(jié).
(1)求證:;
(2)四邊形是什么形狀的四邊形?并說明理由;
(3)直接寫出:當(dāng)分別是多少度時,①;②.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面上豎立著一面墻AB,墻外有一盞路燈D.光線DC恰好通過墻的最高點B,且與地面形成37°角.墻在燈光下的影子為線段AC,并測得AC=5.5米.
(1)求墻AB的高度(結(jié)果精確到0.1米);(參考數(shù)據(jù):tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要縮短影子AC的長度,同時不能改變墻的高度和位置,請你寫出兩種不同的方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為原點,點,點.以為一邊作等邊三角形,點在第二象限.
(Ⅰ)如圖①,求點的坐標(biāo);
(Ⅱ)將繞點順時針旋轉(zhuǎn)得,點旋轉(zhuǎn)后的對應(yīng)點為.
①如圖②,當(dāng)旋轉(zhuǎn)角為30°時,與分別交于點與交于點,求與公共部分面積的值;
②若為線段的中點,求長的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com