【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的垂直平分線上.
A.0B.1C.2D.3
【答案】D
【解析】
由角平分線的作法可知AD是BAC的平分線,由直角三角形兩銳角互余可知∠CAB=60°,從而可知∠BAD=30°,由此可將∠BAD=∠B=30°,從而得到AD=DB,根據(jù)到線段兩端距離相等的點在線段的垂直平分線上可判斷③;由三角形的外角的性質(zhì)可知∠ADC=∠B+∠BAD可判斷.
解:由角平分線的作法可知①正確;
∵∠C=90°,∠B=30°,
∴∠BAC=60°.
∵AD是∠BAC的平分線,
∴∠BAD=30°.
∴∠BAD=∠B=30°.
∴AD=DB.
∴點D在AB的垂直平分線上.
∴③正確.
∵∠ADC=∠B+∠BAD,
∴∠ADC=30°+30°=60°.
故②正確.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線相切,設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)r1=1時,r2015= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求過A、B、C三點的拋物線解析式;
(2)設(shè)拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標(biāo);
(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標(biāo);若不存在,請說明理由.
圖1 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲從A地出發(fā)步行到B地,乙同時從B地步行出發(fā)至A地,2小時后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時.若設(shè)甲剛出發(fā)時的速度為a千米/小時,乙剛出發(fā)的速度為b千米/小時.
(1)A、B兩地的距離可以表示為 千米(用含a,b的代數(shù)式表示);
(2)甲從A到B所用的時間是: 小時(用含a,b的代數(shù)式表示);
乙從B到A所用的時間是: 小時(用含a,b的代數(shù)式表示).
(3)若當(dāng)甲到達B地后立刻按原路向A返行,當(dāng)乙到達A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時36分鐘又再次相遇,請問AB兩地的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達式為y=-3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2,交于點C.
(1)求點D的坐標(biāo);
(2)求直線l2的解析表達式;
(3)求△ADC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市從2018年1月1日開始,禁止燃油助力車上路,于是電動自行車的市場需求量日漸增多.某商店計劃最多投入8萬元購進A、B兩種型號的電動自行車共30輛,其中每輛B型電動自行車比每輛A型電動自行車多500元.用5萬元購進的A型電動自行車與用6萬元購進的B型電動自行車數(shù)量一樣.
(1)求A、B兩種型號電動自行車的進貨單價;
(2)若A型電動自行車每輛售價為2800元,B型電動自行車每輛售價為3500元,設(shè)該商店計劃購進A型電動自行車m輛,兩種型號的電動自行車全部銷售后可獲利潤y元.寫出y與m之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,該商店如何進貨才能獲得最大利潤?此時最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)a(0°<a<360°),得到矩形AEFG
(1)如圖1,當(dāng)點E在BD上時求證:FD=CD;
(2)當(dāng)a為何值時,GC=GB?畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位,再向左平移1個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)作出△ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出C2點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的小正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,A,B,C三點的坐標(biāo)分別為(5,﹣1),(2,﹣5),(2,﹣1).
(1)把△ABC向上平移6個單位后得到△A1B1C1,畫出△A1B1C1;
(2)畫出△A2B2C2,使它與△ABC關(guān)于y軸對稱;
(3)畫出△A3B3C3,使它與△ABC關(guān)于原點中心對稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com