分析 (1)首先根據(jù)函數(shù)的解析式求得點(diǎn)C的坐標(biāo),然后根據(jù)tan∠CAB=3,tan∠CBA=1可求A、B兩點(diǎn)坐標(biāo);將A、B兩點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+bx+6,可求二次函數(shù)解析式;
(2)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面積,利用三角形面積公式表示△ACQ的面積,根據(jù)S△CDQ=S△ABC-S△BDQ-S△ACQ,運(yùn)用二次函數(shù)的性質(zhì)求面積最大時(shí),m的值;
(3)以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能為平行四邊形,因?yàn)镸,N的位置不確定,所以要分三種情況討論,求出滿足題意的n值即可.
解答 解:(1)∵二次函數(shù)y=ax2+bx+6(a≠0)的圖象交y軸于C點(diǎn),
∴C(0,6),
∴OC=6,
∵tan∠CAB=3,tan∠CBA=1,
∴AO=2,BO=6,
∴A(-2,0)、B(6,0),
將A、B兩點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+bx+6,得
$\left\{\begin{array}{l}{4a-2b+6=0}\\{36a+6b+6=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=2}\end{array}\right.$,
故y=-$\frac{1}{2}$x2+2x+6;
(2)依題意,得AB=8,QB=6-m,AQ=m+2,OC=6,則S△ABC=$\frac{1}{2}$AB×OC=24,
∵由DQ∥AC,
∴△BDQ∽△BCA,
$\frac{{S}_{△BDQ}}{{S}_{△BCA}}$=($\frac{BQ}{BA}$)2=($\frac{6-m}{8}$)2,
即S△BDQ=$\frac{3}{8}$(m-6)2,
又∵S△ACQ=$\frac{1}{2}$AQ×OC=3m+6,
∴S=S△ABC-S△BDQ-S△ACQ=24-$\frac{3}{8}$(m-6)2-(3m+6)=-$\frac{3}{8}$m2+$\frac{3}{2}$m+$\frac{9}{2}$=-$\frac{3}{8}$(m-2)2+6,
∴當(dāng)m=2時(shí),S最大;
(3)∵M(jìn)N=$\sqrt{2}$,點(diǎn)A,B都在直線y=x上,MN在直線AB上,MN在線段 AB上,M的橫坐標(biāo)為n,縱坐標(biāo)也為n,
如圖3,過(guò)點(diǎn)M作x軸的平行線,過(guò)點(diǎn)N作y軸的平行線,它們相交于點(diǎn)H.
∴△MHN是等腰直角三角形.
∴MH=NH=1.
∴點(diǎn)N的坐標(biāo)為(n+1,n+1),
①如圖4,當(dāng)n>0時(shí),PM=n,
NQ=n+1-[-$\frac{1}{2}$(n+1)2+2(n+1)+6],
當(dāng)四邊形PMQN為平行四邊形時(shí),PM=NQ.
則n=n+1-[-$\frac{1}{2}$(n+1)2+2(n+1)+6],
解得n=-1+$\sqrt{14}$或$\sqrt{14}$-1;
②如圖5,當(dāng)n<0時(shí),PM=-m,
NQ=n+1-[-$\frac{1}{2}$(n+1)2+2(n+1)+6],
當(dāng)四邊形PMQN為平行四邊形時(shí),PM=NQ.
則-n=n+1-[-$\frac{1}{2}$(n+1)2+2(n+1)+6],
解得n=1-$\sqrt{14}$或n=-1-$\sqrt{14}$,
③∵直線AB過(guò)O,即直線經(jīng)過(guò)第一、三象限,
∴點(diǎn)M在第3象限點(diǎn)N在第2象限不存在;
綜上所述以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能為平行四邊形,n的值是n=1±$\sqrt{14}$,或n=-1±$\sqrt{14}$.
點(diǎn)評(píng) 本題考查了二次函數(shù)性質(zhì)的綜合運(yùn)用、用待定系數(shù)法求出二次函數(shù)的解析式和平行四邊形的判定和性質(zhì)以及相似三角形的性質(zhì)和判定既數(shù)學(xué)分類(lèi)討論思想的運(yùn)用,題目的綜合性強(qiáng),難度大,能夠很好的鍛煉學(xué)生的解題能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $2\sqrt{2}$ | C. | $\sqrt{10}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com