【題目】隨著近幾年我市私家車日越增多,超速行駛成為引發(fā)交通事故的主要原因之一.某中學數(shù)學活動小組為開展“文明駕駛、關(guān)愛家人、關(guān)愛他人”的活動,設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點P,在筆直的車道m(xù)上確定點O,使PO和m垂直,測得PO的長等于21米,在m上的同側(cè)取點A、B,使∠PAO=30°,∠PBO=60°.
(1)求A、B之間的路程(保留根號);
(2)已知本路段對校車限速為12米/秒若測得某校車從A到B用了2秒,這輛校車是否超速?請說明理由.
【答案】(1)AB=14米;(2)這輛校車超速;理由見解析.
【解析】試題分析:(1)Rt△OPC與Rt△BOP中,先根據(jù)銳角三角函數(shù)的定義求出AO及BO的長,再根據(jù)AB=AO-BO即可得出結(jié)果;
(2)先根據(jù)汽車從A到B用時2秒求出其速度,再與已知相比較即可.
解:(1)在Rt△AOP中,∵PO=21米,∠PAO=30°,
∴AO===21(米);
在Rt△BOP中,∵PO=21米,∠PBO=60°,
∴BO===7(米),
∴AB=AO﹣BO=14米;
(2)這輛校車超速;理由如下:
∵校車從A到B用時2秒,
∴速度為14÷2=7(米/秒)>12米/秒,
∴這輛校車在AB路段超速.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處60 m的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡比為i=1∶的斜坡DB前進30 m到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結(jié)果用根號表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級(1)班全體學生2018年初中畢業(yè)體育學業(yè)考試成績統(tǒng)計表如下:
成績/分 | 45 | 49 | 52 | 54 | 55 | 58 | 60 |
人數(shù) | 2 | 5 | 6 | 6 | 8 | 7 | 6 |
根據(jù)上表中信息判斷,下列結(jié)論中錯誤的是( 。
A.該班一共有40名同學
B.該班學生這次考試成績的眾數(shù)是55分
C.該班學生這次考試成績的中位數(shù)是55分
D.該班學生這次考試成績的平均數(shù)是55分
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校進行校園美化工程招標時,有甲、乙兩個工程隊投標,經(jīng)測算:甲隊單獨完成這項工程需要60天,如果由甲隊先做20天,剩下的工程由甲、乙合作24天完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需要支付工程款3.5萬元,乙隊施工一天需要支付工程款2萬元:如果規(guī)定在70天內(nèi)完成這項工作,是由甲、乙兩隊單獨完成省錢?還是由甲乙合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某電腦公司經(jīng)銷甲種型號電腦,受經(jīng)濟危機影響,電腦價格不斷下降.今年三月份的電腦售價比去年同期每臺降價1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.
(1)今年三月份甲種電腦每臺售價多少元?
(2)為了增加收入,電腦公司決定再經(jīng)銷乙種型號電腦,已知甲種電腦每臺進價為3500元,乙種電腦每臺進價為3000元,公司預計用不多于5萬元且不少于4.8萬元的資金購進這兩種電腦共15臺,有幾種進貨方案?
(3)如果乙種電腦每臺售價為3800元,為打開乙種電腦的銷路,公司決定每售出一臺乙種電腦,返還顧客現(xiàn)金元,要使(2)中所有方案獲利相同,值應是多少?此時,哪種方案對公司更有利?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的邊AB、AC的垂直平分線相交于點P.連接PB、PC,若∠A=70°,則∠PBC的度數(shù)是 ______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,點分別表示數(shù),且,動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向右運動,點始終為線段的中點,設(shè)點運動的時間為秒.則:
在點運動過程中,用含的式子表示點在數(shù)軸上所表示的數(shù).
當時,點在數(shù)軸上對應的數(shù)是什么?
設(shè)點始終為線段的中點,某同學發(fā)現(xiàn),當點運動到點右側(cè)時,線段長度始終不變.請你判斷該同學的說法是否正確,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?
②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com