【題目】如圖1,在平面直角坐標(biāo)系xoy中,二次函數(shù)的圖象與x軸的交點為A,B,頂點為C,點D為點C關(guān)于x軸的對稱點,過點A作直線lBD于點E,連接BC的直線交直線lK.

1)問:在四邊形ABKD內(nèi)部是否存在點P,使它到四邊形ABKD四邊的距離都相等?

若存在,請求出點P的坐標(biāo);若不存在,請說明理由;

2)若M,N分別為直線AD和直線l上的兩個動點,連結(jié)DN,NMMK,如圖2,求DN+NM+MK和的最小值.

【答案】(1) 四邊形ABCD內(nèi)部存在點P2,)到四邊形ABCD四邊的距離相等;(28.

【解析】

1)由拋物線解析式求點A、B、C、D的坐標(biāo),求直線BC解析式,把直線BC與直線l的解析式聯(lián)立方程組,求得的解為點K坐標(biāo),因此求得AB=BK=KD=AD=4,即四邊形ABKD為菱形.由菱形性質(zhì)可知對角線平分一組對角,故對角線AKBD交點E在菱形四個內(nèi)角的平分線上,所以點E到四邊距離相等,即為符合題意的點P

2)由菱形性質(zhì)可知點B、D關(guān)于直線AK對稱,故有DN=BN,所以當(dāng)點B、NM在同一直線上時,DN+MN=BN+MN=BM最。鼽cK關(guān)于直線AD對稱點Q,得MK=MQ,所以當(dāng)點Q、MB在同一直線上時,BM+MK=BM+MQ=BQ最小,即BQ的長為DN+NM+MK的最小值.由AK平分∠DAB可求得點K到直線AD距離等于點K的縱坐標(biāo),進而求得KQ的長;再由BKAD得∠BKQ=DRQ=90°,利用勾股定理即求得BQ的長.

1)在四邊形ABKD內(nèi)部存在點P到四邊形ABKD四邊的距離都相等.

當(dāng)y=0時,

解得:x1=-1,x2=3

A-10),B30),AB=4

∴頂點C1-2

∵點D為點C關(guān)于x軸的對稱點

D1,2),

設(shè)直線BC解析式為y=bx+c

, 解得:

∴直線BC

,解得:

K52

,DKx軸,DK=5-1=4

AB=BK=DK=AD=4

∴四邊形ABKD是菱形

∴對角線AK、BD平分一組對角,

AK、BD交點E1,)到菱形四邊距離相等

∴點P與點E重合時,即符合題意的點

∴在四邊形ABKD內(nèi)部存在點P1,)到四邊形ABKD四邊的距離都相等.

2)過點KKFx軸于點F,作點K關(guān)于直線AD的對稱點Q,KQ與直線AD相交于點R,連接MQ、QBNB

∵菱形ABKD中,AKBD互相垂直平分

∴點BD關(guān)于直線AK對稱

DN=BN

∴當(dāng)點B、NM在同一直線上時,DN+NM=BN+NM=BM最小

∵點KQ關(guān)于直線AD對稱

KQAD,QR=KRMK=MQ

∴當(dāng)點Q、M、B在同一直線上時,BM+MK=BM+MQ=BQ最小

BQ的長為DN+NM+MK的最小值

AK平分∠DABKFAB,KRADyK=2

KF=KR=2

KQ=2KR=4

BKAD

∴∠BKQ=DRQ=90°

RtBKQ中,BQ=

DN+NM+MK和的最小值為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(4,0)、(0,2),點C為線段AB上任意一點(不與點AB重合).CDOA于點D,點EDC的延長線上,EFy軸于點F,若點CDE中點,則四邊形ODEF的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在RtABC中,ACB=90°,AC=3BC=4,點EF分別在邊AB、AC上,將AEF沿直線EF折疊,使點A的對應(yīng)點D恰好落在邊BC上.若BDE是直角三角形,則CF的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx3與直線yx+3交于點Am,0)和點B2,n),與y軸交于點C

1)求m,n的值及拋物線的解析式;

2)在圖1中,把AOC平移,始終保持點A的對應(yīng)點P在拋物線上,點C,O的對應(yīng)點分別為MN,連接OP,若點M恰好在直線yx+3上,求線段OP的長度;

3)如圖2,在拋物線上是否存在點Q(不與點C重合),使QABABC的面積相等?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的漢字聽寫大賽.為了解本次大賽的成績,學(xué)校德育處隨機抽取了其中200名學(xué)生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:

成績x(分)分?jǐn)?shù)段

頻數(shù)(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

頻數(shù)分布直方圖

根據(jù)所給的信息,回答下列問題:

1m=________;n=________

2)補全頻數(shù)分布直方圖;

3)這200名學(xué)生成績的中位數(shù)會落在________分?jǐn)?shù)段;

4)若成績在90分以上(包括90分)為優(yōu)等,請你估計該校參加本次比賽的2000名學(xué)生中成績是優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】活動1

在一只不透明的口袋中裝有標(biāo)號為1,233個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭,甲、乙、丙三位同學(xué)按丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,請你通過畫樹狀圖或列表計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)

活動2

在一只不透明的口袋中裝有標(biāo)號為1,23,44個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭,請你對甲、乙、丙三名同學(xué)規(guī)定一個摸球順序: ,他們按這個順序從袋中各摸出一個球(不放回),摸到1號球勝出,通過畫樹狀圖或列表求每位同學(xué)勝出的概率分別是多少.

猜想:

在一只不透明的口袋中裝有標(biāo)號為1,2,3,…,為正整數(shù))的個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭,甲、乙、丙三名同學(xué)按任意順序從袋中各摸出一個球(不放回),摸到1號球勝出,猜想:直接寫出這三名同學(xué)每人勝出的概率之間的大小關(guān)系.

由此你能得到什么活動經(jīng)驗?(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,BC10cm、DC6cm,點E、F分別為邊ABBC上的兩個動點,E從點A出發(fā)以每秒5cm的速度向B運動,F從點B出發(fā)以每秒3cm的速度向C運動,設(shè)運動時間為t秒.若∠AFD=∠AED,則t的值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣(xm2+4m0)的頂點為A,與直線x相交于點B,點A關(guān)于直線x的對稱點為C

1)若拋物線y=﹣(xm2+4m0)經(jīng)過原點,求m的值.

2)點C的坐標(biāo)為   .用含m的代數(shù)式表示點B到直線AC的距離為   

3)將y=﹣(xm2+4m0,且x)的函數(shù)圖象記為圖象G,圖象G關(guān)于直線x的對稱圖象記為圖象H.圖象G與圖象H組合成的圖象記為圖象M

①當(dāng)圖象Mx軸恰好有三個交點時,求m的值.

②當(dāng)ABC為等腰直角三角形時,直接寫出圖象M所對應(yīng)的函數(shù)值小于0時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)的圖象經(jīng)過原點,開口向上,對稱軸為直線,對于下列兩個結(jié)論:①m為任意實數(shù),則有;②方程有兩個不相等的實數(shù)根,一個根小于0,另一個根大于2,說法正確的是(

A.①對,②錯B.①錯,②對C.①②都對D.①②都錯

查看答案和解析>>

同步練習(xí)冊答案