【題目】如圖,已知拋物線y=ax2+bx﹣1與x軸的交點為A(﹣1,0),B(2,0),且與y軸交于C點.
(1)求該拋物線的表達(dá)式;
(2)點C關(guān)于x軸的對稱點為C1,M是線段BC1上的一個動點(不與B、C1重合),ME⊥x軸,MF⊥y軸,垂足分別為E、F,當(dāng)點M在什么位置時,矩形MFOE的面積最大?說明理由.
(3)已知點P是直線y=x+1上的動點,點Q為拋物線上的動點,當(dāng)以C、C1、P、Q為頂點的四邊形為平行四邊形時,求出相應(yīng)的點P和點Q的坐標(biāo).
【答案】(1) ;(2)點M為線段C1B中點時,S矩形MFOE最大,理由見解析;(3) 點P和點Q的坐標(biāo)為P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0).
【解析】
(1)將A(﹣1,0),B(2,0)分別代入解析式即可解答
(2)令x=0,y=﹣1,得出C的坐標(biāo),再利用對稱軸的性質(zhì)得出C1,將B(2,0),C1(0,1)分別代入直線C1B解析式,得出直線C1B的解析式,設(shè)M(t,),則 E(t,0),F(0,),根據(jù)矩形的面積公式即可解答
(3)根據(jù)題意可分情況討論①當(dāng)C1C為邊,則C1C∥PQ,C1C=PQ,設(shè)P(m,m+1),Q(m,),求出m即可解答;②C1C為對角線,∵C1C與PQ互相平分,C1C的中點為(0,0),PQ的中點為(0,0),設(shè)P(m,m+1),則Q(﹣m,),求出m即可
(1)將A(﹣1,0),B(2,0)分別代入拋物線y=ax2+bx﹣1中,得,解得:
∴該拋物線的表達(dá)式為:.
(2)在中,令x=0,y=﹣1,∴C(0,﹣1)
∵點C關(guān)于x軸的對稱點為C1,
∴C1(0,1),設(shè)直線C1B解析式為y=kx+b,將B(2,0),C1(0,1)分別代入得,解得,
∴直線C1B解析式為,設(shè)M(t,),則 E(t,0),F(0,)
∴S矩形MFOE=OE×OF=t()=﹣(t﹣1)2+,
∵﹣<0,
∴當(dāng)t=1時,S矩形MFOE最大值=,此時,M(1,);即點M為線段C1B中點時,S矩形MFOE最大.
(3)由題意,C(0,﹣1),C1(0,1),以C、C1、P、Q為頂點的四邊形為平行四邊形,分以下兩種情況:
①C1C為邊,則C1C∥PQ,C1C=PQ,設(shè)P(m,m+1),Q(m,),
∴|()﹣(m+1)|=2,解得:m1=4,m2=﹣2,m3=2,m4=0(舍),
P1(4,3),Q1(4,5);P2(﹣2,0),Q2(﹣2,2);P3(2,2),Q3(2,0)
②C1C為對角線,∵C1C與PQ互相平分,C1C的中點為(0,0),
∴PQ的中點為(0,0),設(shè)P(m,m+1),則Q(﹣m,)
∴(m+1)+()=0,解得:m1=0(舍去),m2=﹣2,
∴P4(﹣2,0),Q4(2,0);
綜上所述,點P和點Q的坐標(biāo)為:P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為 ;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)(,,是常數(shù),)的圖象的一部分與軸的交點在與之間,對稱軸為直線.下列結(jié)論:①;②;③;④(為實數(shù));⑤當(dāng)時,.其中,正確結(jié)論的個數(shù)是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于點,,與軸交于點,頂點為,直線與軸交于點.
(Ⅰ)求頂點的坐標(biāo);
(Ⅱ)如圖,設(shè)點為線段上一動點(點不與點、重合),過點作軸的垂線與拋物線交于點.求的面積最大值;
(Ⅲ)點在線段上,當(dāng)時,求點的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實立德樹人的根本任務(wù),加強思改、歷史學(xué)科教師的專業(yè)化隊伍建設(shè).某校計劃從前來應(yīng)聘的思政專業(yè)(一名研究生,一名本科生)、歷史專業(yè)(一名研究生、一名本科生)的高校畢業(yè)生中選聘教師,在政治思想審核合格的條件下,假設(shè)每位畢業(yè)生被錄用的機會相等
(1)若從中只錄用一人,恰好選到思政專業(yè)畢業(yè)生的概率是 :
(2)若從中錄用兩人,請用列表或畫樹狀圖的方法,求恰好選到的是一名思政研究生和一名歷史本科生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過點A(1,0)和點B(﹣3,0),與y軸交于點C,點P為第二象限內(nèi)拋物線上的動點.
(1)拋物線的解析式為 ,拋物線的頂點坐標(biāo)為 ;
(2)如圖1,連接OP交BC于點D,當(dāng)S△CPD:S△BPD=1:2時,請求出點D的坐標(biāo);
(3)如圖2,點E的坐標(biāo)為(0,﹣1),點G為x軸負(fù)半軸上的一點,∠OGE=15°,連接PE,若∠PEG=2∠OGE,請求出點P的坐標(biāo);
(4)如圖3,是否存在點P,使四邊形BOCP的面積為8?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是大小相等的邊長為1的正方形構(gòu)成的網(wǎng)格,,,,均為格點.與交于點.
[1].的值為_________.
[2].現(xiàn)只有無刻度的直尺,請在給定的網(wǎng)格中作出一個格點三角形.要求:①三角形中含有與大小相等的角;②可借助該三角形求得的三角函數(shù)值.請并在橫線上簡單說明你的作圖方法.____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于),兩點,與軸交于點,連接.
(1)求該拋物線的解析式,并寫出它的對稱軸;
(2)點為拋物線對稱軸上一點,連接,若,求點的坐標(biāo);
(3)已知,若是拋物線上一個動點(其中),連接,求面積的最大值及此時點的坐標(biāo).
(4)若點為拋物線對稱軸上一點,拋物線上是否存在點,使得以為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com