【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)Px,y),我們把P’y﹣1﹣x﹣1)叫做點(diǎn)P的友好點(diǎn),已知點(diǎn)A1的友好點(diǎn)為A2,點(diǎn)A2的友好點(diǎn)為A3,點(diǎn)A3的友好點(diǎn)為A4,這樣依次得到點(diǎn).

1)當(dāng)點(diǎn)A1的坐標(biāo)為(2,1),則點(diǎn)A3的坐標(biāo)為   ,點(diǎn)A2016的坐標(biāo)為   ;

2)若A2016的坐標(biāo)為(﹣3,2),則設(shè)A1x,y),求x+y的值;

3)設(shè)點(diǎn)A1的坐標(biāo)為(a,b ),若A1,A2,A3,…An,點(diǎn)An均在y軸左側(cè),求a、b的取值范圍.

【答案】1)(﹣4﹣1);(﹣23;

2x+y=3;

3﹣2a0,﹣1b1

【解析】試題分析:(1)、首先分別求出前面幾個(gè)點(diǎn)的坐標(biāo),從而得出規(guī)律,然后得出所求的點(diǎn)的坐標(biāo);(2)、根據(jù)規(guī)律得出的坐標(biāo),從而求出x+y的值;(3)、首先分別寫成前面幾個(gè)點(diǎn)的坐標(biāo),然后根據(jù)點(diǎn)所在的位置得出不等式組,從而求出a和b的取值范圍.

試題解析:(1)、觀察,發(fā)現(xiàn)規(guī)律:A1(2,1),A2(0,﹣3),A3(﹣4,﹣1),A4(﹣2,3),A5(2,1),…,

∴A4n+1(2,1),A4n+2(0,﹣3),A4n+3(﹣4,﹣1),A4n+4(﹣2,3)(n為自然數(shù)).

∵2016=504×4, ∴點(diǎn)A2016的坐標(biāo)為(﹣2,3).

(2)、∵A2016的坐標(biāo)為(﹣3,2), ∴A2017(1,2),A1(1,2), ∴x+y=3.

(3)、∵A1(a,b),A2(b﹣1,﹣a﹣1),A3(﹣a﹣2,﹣b),A4(﹣b﹣1,a+1),

∵A1,A2,A3,…An,點(diǎn)An均在y軸左側(cè),

, 解得:﹣2<a<0,﹣1<b<1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)頂角相等,改寫成如果_____________, 那么_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正數(shù)的平方根是2a﹣7和a+4,求這個(gè)正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的動(dòng)點(diǎn),BC∥OP,BC=OP.

(1)求證:四邊形AOCP是平行四邊形;

(2)若AB=4,填空:

①當(dāng)AP=   時(shí),四邊形AOCP是菱形;

②當(dāng)AP=   時(shí),四邊形OBCP是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某教學(xué)活動(dòng)小組選定測(cè)量山頂鐵塔AE的高,他們?cè)?0m高的樓CD的底部點(diǎn)D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角為36°52′.若小山高BE=62m,樓的底部D與山腳在同一水平面上,求鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題
(1)已知x= -1,求x2+3x-1的值;
(2)已知 ,求 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

(1)在圖中畫出與△ABC關(guān)于直線 成軸對(duì)稱的△A ;
(2)線段 被直線 ;
(3)在直線 上找一點(diǎn)P,使PB+PC的長(zhǎng)最短,并算出這個(gè)最短長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.

(1)確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.

(2)請(qǐng)用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式4﹣x≤2(3﹣x)的正整數(shù)解有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.無(wú)數(shù)個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案