【題目】如圖,拋物線y=ax2+bx(a≠0)的圖象過原點O和點A(1, ),且與x軸交于點B,△AOB的面積為。
(1)求拋物線的解析式;
(2)若拋物線的對稱軸上存在一點M,使△AOM的周長最小,求M點的坐標;
(3)點F是x軸上一動點,過F作x軸的垂線,交直線AB于點E,交拋物線于點P,且PE=,直接寫出點E的坐標(寫出符合條件的兩個點即可)。
【答案】(1);(2)M(, );(3)(下列四個中任意兩個正確)(0, )(, )(, )(, )
【解析】試題分析:(1)由△AOB的面積得到OB的長,進而得出點B的坐標.再把A、B的坐標代入拋物線的解析式,解方程組即可得出結論;
(2)先求出拋物線的對稱軸,由點B與點O關于對稱軸對稱,得到直線AB與對稱軸的交點就是所要求的點M.由直線AB過A、B兩點,得到直線AB的解析式,再求出直線AB和對稱軸的交點即可;
(3)設F(x,0),表示出E,P的坐標,進而得到PE的長,解方程即可得出結論.
試題解析:解:(1)∵△AOB的面積為, 點A(1, ),∴=,∴OB=2,∴B(-2,0).∵拋物線過點A,B,∴,解得: ,∴;
(2)拋物線的對稱軸為.∵點B與點O關于對稱軸對稱,∴由題意得直線AB與對稱軸的交點就是點M.設直線AB為: .∵直線AB過A、B兩點,∴,解得: ,∴.
當時, ,∴M(, );
(3)設F(x,0),則E(x, ),P(x, ),則PE=,整理得: ,∴或,解得:x1=0,x2=-1,x3=,x4=.∴E的坐標為(0, )或(, )或(, )或(, ).
科目:初中數(shù)學 來源: 題型:
【題目】為拓寬學生視野,引導學生主動適應社會,促進書本知識和生活經(jīng)驗的深度融合,我市某中學決定組織部分班級去赤壁開展研學旅行活動,在參加此次活動的師生中,若每位老師帶17個學生,還剩12個學生沒人帶;若每位老師帶18個學生,就有一位老師少帶4個學生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.
甲種客車 | 乙種客車 | |
載客量/(人/輛) | 30 | 42 |
租金/(元/輛) | 300 | 400 |
學校計劃此次研學旅行活動的租車總費用不超過3100元,為了安全,每輛客車上至少要有2名老師.
(1)參加此次研學旅行活動的老師和學生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為 輛;
(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD為等邊三角形,點E為△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點,過點E作EM∥AB,交直線AC于點M,作EN∥AC,交直線AB于點N,則的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,D、E分別在BC、AC邊上.
(1)如圖1,F(xiàn)是線段AD上的一點,連接CF,若AF=CF;
①求證:點F是AD的中點;
②判斷BE與CF的數(shù)量關系和位置關系,并說明理由;
(2)如圖2,把△DEC繞點C順時針旋轉α角(0<α<90°),點F是AD的中點,其他條件不變,判斷BE與CF的關系是否不變?若不變,請說明理由;若要變,請求出相應的正確結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,則滿足下列條件的一定是直角三角形的是( 。
A. ∠A:∠B:∠C=3:4:5B. a:b:c=1::3
C. a=7,b=24,c=25D. a=32,b=42,c=52
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC,AB=AC=24厘米,∠B=∠C,BC=16厘米,點D為AB的中點.點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為v厘米/秒,則當△BPD與△CQP全等時,v的值為_____ 厘米/秒.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com