【題目】全民健身的今天,散步運(yùn)動(dòng)是大眾喜歡的活動(dòng)項(xiàng)目。家住同一小區(qū)的甲乙兩人每天都在同一條如圖1的陽(yáng)光走道上來回散步.某天,甲乙兩人同時(shí)從大道的A端以各自的速度勻速在大道上散步健身,步行一段時(shí)間后,甲接到消息有同事在出發(fā)地等他商量事務(wù)(甲收消息的時(shí)間忽略不計(jì)),于是甲按原速度返回,遇見乙后用原來的2倍速度跑步前往,此時(shí)乙仍按原計(jì)劃繼續(xù)散步運(yùn)動(dòng),4分鐘后甲結(jié)束了談話,繼續(xù)按原速度運(yùn)動(dòng).圖2是甲乙兩人之間的距離S(m)與他們出發(fā)后的時(shí)間x(分)之間函數(shù)關(guān)系的部分圖像,已知甲步行速度比乙快.
(1)由圖像可知,甲的速度為___ ___m/分;乙的速度為_____m/分.
(2)若甲處理完事情繼續(xù)按原速度散步,再次遇到乙后兩人稍作放松后就各自回家,根據(jù)已有信息,就甲乙兩人一起散步到第二次相遇的過程,請(qǐng)?jiān)趫D2中補(bǔ)全函數(shù)圖像,并寫出所補(bǔ)的圖像中的S與x的函數(shù)關(guān)系式及x的取值范圍.
【答案】(1)60;40;(2)S= ,圖詳見解析
【解析】
(1)由函數(shù)圖像得到10分鐘兩人距離最大,12分鐘兩人距離為0,從而列方程求解即可,
(2)當(dāng)兩人間的距離是兩人的路程之和,可得函數(shù)關(guān)系式;當(dāng)兩人間的距離是相距的640米與乙的路程和,從而可得解析式;當(dāng)時(shí),兩人間的距離是相距的800米與乙的路程和減去甲的路程,從而寫出函數(shù)關(guān)系式.再根據(jù)關(guān)系式畫出圖像即可.
解:(1)設(shè)甲的速度為每分鐘,乙的速度為每分鐘,
結(jié)合圖像可得:
解得:
故答案為:60;40;
(2)當(dāng)
甲談話4分鐘,即
當(dāng)時(shí),
綜上:
S=
補(bǔ)全圖像如下:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織學(xué)生參加交通安全知識(shí)網(wǎng)絡(luò)測(cè)試活動(dòng).小華對(duì)九年(8)班全體學(xué)生的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì),并將成績(jī)分為四個(gè)等級(jí):優(yōu)秀、良好、一般、不合格,繪制成如下的統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中所給的信息解答下列問題:
(1)九年(8)班有______名學(xué)生,并把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已知該市共有名中學(xué)生參加了這次交通安全知識(shí)測(cè)試,請(qǐng)你根據(jù)該班成績(jī)估計(jì)該市在這次測(cè)試中成績(jī)?yōu)閮?yōu)秀的人數(shù);
(3)小華查了該市教育網(wǎng)站發(fā)現(xiàn),全市參加本次測(cè)試的學(xué)生中,成績(jī)?yōu)閮?yōu)秀的有人,請(qǐng)你用所學(xué)統(tǒng)計(jì)知識(shí)簡(jiǎn)要說明實(shí)際優(yōu)秀人數(shù)與估計(jì)人數(shù)出現(xiàn)較大偏差的原因.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=與直線l:y=kx+b相交于點(diǎn)A,B,直線l與y軸交于點(diǎn)P.
(1)當(dāng)k=0時(shí),求的值;
(2)點(diǎn)M是拋物線上的動(dòng)點(diǎn),過點(diǎn)M作MG⊥直線l于點(diǎn)G,當(dāng)k=0時(shí),求的值;
(3)點(diǎn)M是拋物線上的動(dòng)點(diǎn),過點(diǎn)M作MG∥y軸交直線l于點(diǎn)G,當(dāng)k=2時(shí),求證:不論b為何實(shí)數(shù),的值為定值,并求定值;
(4)若將(2)的拋物線改為“y=ax2”,其他條件不變,則的值還為定值嗎?若是,請(qǐng)求出定值;若不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=mx2﹣(2m+1)x+2(m≠0),請(qǐng)判斷下列結(jié)論是否正確,并說明理由.
(1)當(dāng)m<0時(shí),函數(shù)y=mx2﹣(2m+1)x+2在x>1時(shí),y隨x的增大而減小;
(2)當(dāng)m>0時(shí),函數(shù)y=mx2﹣(2m+1)x+2圖象截x軸上的線段長(zhǎng)度小于2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,BA⊥y軸于點(diǎn)B,反比例函數(shù)y=(x>0)的圖象與線段AB相交于點(diǎn)C,且C是線段AB的中點(diǎn),若△OAB的面積為3,則k的值為( )
A.B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,點(diǎn)分別是邊的中點(diǎn),連接.將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為.
(1)問題發(fā)現(xiàn)
①當(dāng)時(shí),____________;②當(dāng)時(shí),___________.
(2)拓展探究試判斷:當(dāng)時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明.
(3)問題解決
繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至三點(diǎn)在同一條直線上時(shí),直接寫出線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形的頂點(diǎn)的坐標(biāo)為,頂點(diǎn),分別在軸,軸上,點(diǎn)的坐標(biāo)為,過點(diǎn)的直線與矩形的邊交于點(diǎn),且點(diǎn)不與點(diǎn)重合.以為一邊作菱形,點(diǎn)在矩形的邊上,設(shè)直線的函數(shù)表達(dá)式為.
(1)當(dāng)時(shí),求直線的函數(shù)表達(dá)式;
(2)當(dāng)點(diǎn)的坐標(biāo)為時(shí),求直線的函數(shù)表達(dá)式;
(3)連接,設(shè)的面積為,的長(zhǎng)為,請(qǐng)直接寫出與的函數(shù)表達(dá)式及自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),兩個(gè)等腰直角三角形ABC和DEF有一條邊在同一條直線l上,DE=2,AB=1.將直線EB繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)45°,交直線AD于點(diǎn)M.將圖(1)中的△ABC沿直線l向右平移,設(shè)C、E兩點(diǎn)間的距離為k.請(qǐng)解答下列問題:
(1)①當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),如圖(2)所示,此時(shí)的值為 .
②在平移過程中,的值為 (用含k的代數(shù)式表示).
(2)將圖(2)中的△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使點(diǎn)A落在線段DF上,如圖(3)所示,將直線EB繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)45°,交直線AD于點(diǎn)M,請(qǐng)補(bǔ)全圖形,并計(jì)算的值.
(3)將圖(1)中的△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(0°<α≤45°),將直線EB繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)45°,交直線AD于點(diǎn)M,計(jì)算的值(用含k的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com