【題目】食品安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面的兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有_________人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_________度;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

扇形統(tǒng)計(jì)圖 條形統(tǒng)計(jì)圖

【答案】 60 90 (2) 300

【解析】分析:(1)由了解很少的有30,50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角

2)由(1)可求得了解的人數(shù),繼而補(bǔ)全條形統(tǒng)計(jì)圖;

3)利用樣本估計(jì)總體的方法即可求得答案.

詳解:(1∵了解很少的有30,50%,∴接受問卷調(diào)查的學(xué)生共有30÷50%=60(人);

∴扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為×360°=90°;

故答案為:60,90

260153010=5;

補(bǔ)全條形統(tǒng)計(jì)圖得

3)根據(jù)題意得900×=300(人),則估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)為300人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CDBC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG

1)求證:四邊形DEGF是平行四邊形;

2)當(dāng)點(diǎn)GBC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的面積為10cm2,它的兩條對(duì)角線交于點(diǎn)O1,以ABAO1為兩鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對(duì)角線交于點(diǎn)O2,同樣以AB、AO2為兩鄰邊作平行四邊形ABC2O2,,依此類推,則平行四邊形ABCnOn的面積為( )

A. cm2B. cm2C. cm2D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)超市第一次用6000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

22

30

售價(jià)(元/件)

29

40

(1)該超市購(gòu)進(jìn)甲、乙兩種商品各多少件?

(2)該超市將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?

(3)該超市第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤(rùn)比第一次獲得的總利潤(rùn)多180元,求第二次乙商品是按原價(jià)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOD160°,OB、OCOMON是∠AOD內(nèi)的射線.

(1)如圖1,若OM平分∠AOB,ON平分∠BOD.當(dāng)OB繞點(diǎn)O在∠AOD內(nèi)旋轉(zhuǎn)時(shí),求∠MON的大小;

(2)如圖2,若∠BOC20°OM平分∠AOC,ON平分∠BOD.當(dāng)∠BOC繞點(diǎn)O在∠AOD內(nèi)旋轉(zhuǎn)時(shí),求∠MON的大。

(3)(2)的條件下,若∠AOB10°,當(dāng)∠B0C在∠AOD內(nèi)繞著點(diǎn)O2/秒的速度逆時(shí)針旋轉(zhuǎn)t秒時(shí),∠AOMDON.t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn);直線軸交于點(diǎn),與直線交于點(diǎn),且點(diǎn)的縱坐標(biāo)為4.

1)不等式的解集是

2)求直線的解析式及的面積;

3)點(diǎn)在坐標(biāo)平面內(nèi),若以、、為頂點(diǎn)的四邊形是平行四邊形,求符合條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩塊大小不等的等腰直角三角形按圖1放置,點(diǎn)為直角頂點(diǎn),點(diǎn)上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)角度,連接、.

1)若,則當(dāng) 時(shí),四邊形是平行四邊形;

2)圖2,若于點(diǎn),延長(zhǎng)于點(diǎn),求證:的中點(diǎn);

3)圖3,若點(diǎn)的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過點(diǎn)A(0,3),點(diǎn)p是該直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P分別作PM垂直x軸于點(diǎn)M,PN垂直y軸于點(diǎn)N,在四邊形PMON上分別截。篜C=MP,MB=OM,OE=ON,ND=NP.

(1)b=  ;

(2)求證:四邊形BCDE是平行四邊形;

(3)在直線y=﹣x+b上是否存在這樣的點(diǎn)P,使四邊形BCDE為正方形?若存在,請(qǐng)求出所有符合的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形在平面直角坐標(biāo)系中, ,,把矩形沿直線對(duì)折使點(diǎn)落在點(diǎn),直線的交點(diǎn)分別為,點(diǎn)軸上,點(diǎn)在坐標(biāo)平面內(nèi),若四邊形是菱形,則菱形的面積是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案