分析 (1)連接BD,利用等腰梯形的性質(zhì)得到AC=BD,再根據(jù)垂直平分線的性質(zhì)得到DB=FB,從而得到AC=BF,然后證得AC∥BF,即可得出結(jié)論;
(2)利用題目提供的等積式和兩直角相等可以證得兩直角三角形相似,得到對(duì)應(yīng)角相等,從而得到直角來證明有一個(gè)角是直角的平行四邊形是矩形.
解答 (1)證明:連接BD,如圖所示:
∵梯形ABCD中,AD∥BC,AB=CD,
∴AC=BD,
∵DE⊥BC,EF=DE,
∴BD=BF,CD=CF,
∴AC=BF,AB=CF,
∴四邊形ABFC是平行四邊形;
(2)證明:∵DE2=BE•CE,
∴$\frac{DE}{CE}=\frac{BE}{DE}$,
∵∠DEB=∠DEC=90°,
∴△BDE∽△DCE,
∴∠CDE=∠DBE,
∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°,
∴四邊形ABFC是矩形.
點(diǎn)評(píng) 本題考查了等腰梯形的性質(zhì)、全等及相似三角形的判定及性質(zhì)等,是一道集合了好幾個(gè)知識(shí)點(diǎn)的綜合題,但題目的難度不算大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2cm | B. | 11cm | C. | 22cm | D. | 24cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com