【題目】如圖,小瑩在數(shù)學綜合實踐活動中,利用所學的數(shù)學知識對某小區(qū)居民樓AB的高度進行測量.先測得居民樓AB與CD之間的距離AC為35m,后站在M點處測得居民樓CD的頂端D的仰角為45°.居民樓AB的頂端B的仰角為55°.已知居民樓CD的高度為16.6m,小瑩的觀測點N距地面1.6m.求居民樓AB的高度(精確到1m).(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
【答案】約為30m
【解析】
過點N作EF∥AC交AB于點E,交CD于點F,可得AE=MN=CF=1.6,EF=AC=35,再根據(jù)銳角三角函數(shù)可得BE的長,進而可得AB的高度.
解:過點N作EF∥AC交AB于點E,交CD于點F.
則AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,
EN=AM,NF=MC,
則DF=CD-CF=16.6-1.6=15.
在Rt△DFN中,∵∠DNF=45°,
∴NF=DF=15.
∴EN=EF-NF=35-15=20.
在Rt△BEN中,∵tan∠BNE=,
∴BE=EN·tan∠BNE=20×tan55°≈20×1.43=28.6°.
∴AB=BE+AE=28.6+1.6≈30.
答:居民樓AB的高度約為30m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是正方形ABCD的對角線,BC=4,邊BC在其所在的直線上平移,平移后得到的線段記為PQ,連接PA、QD,并過點Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請判斷OA、OP之間的數(shù)量關系和位置關系,并利用圖1加以證明.
(3)在平移變換過程中,設y=S△OPB,BP=x(0≤x≤4),求y與x之間的函數(shù)關系式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是△ABC中AB邊上一點,以點O為圓心,OA的長為半徑作⊙O,⊙O恰好經(jīng)過點C,且與邊BC,AB分別交于E,F兩點.連接AE,過點E作⊙O的切線,交線段BF于點M,交AC的延長線于點N,且EM=BM,EB=AO.
(1)求的度數(shù);
(2)求證:;
(3)若,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于已知的兩個函數(shù),任取自變量的一個值,當時,它們對應的函數(shù)值相等;當時,它們對應的函數(shù)值互為相反數(shù),我們稱這樣的兩個函數(shù)互為相關函數(shù).例如:正比例函數(shù),它的相關函數(shù)為.
(1)已知點在一次函數(shù)的相關函數(shù)的圖像上,求的值;
(2)已知二次函數(shù).
①當點在這個函數(shù)的相關函數(shù)的圖像上時,求的值;
②當時,求函數(shù)的相關函數(shù)的最大值和最小值.
(3)在平面直角坐標系中,點、的坐標分別為、,連結(jié).直接寫出線段與二次函數(shù)的相關函數(shù)的圖像有兩個公共點時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(1,0),點B的坐標為(0,4),已知點E(m,0)是線段DO上的動點,過點E作PE⊥x軸交拋物線于點P,交BC于點G,交BD于點H.
(1)求該拋物線的解析式;
(2)當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】昌云中學計劃為地理興趣小組購買大、小兩種地球儀,若購買1個大地球儀和3個小地球儀需要136元;若購買2個大地球儀和1個小地球儀需要132元.
(1)求每個大地球儀和每個小地球儀各多少元;
(2)昌云中學決定購買以上兩種地球儀共30個,總費用不超過960元,那么昌云中學最多可以購買多少個大地球儀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是射線BC上的一定點,點P是線段AB上一動點,連接PD,作BQ垂直PD,交直線PD于點Q.小騰根據(jù)學習函數(shù)的經(jīng)驗,對線段PB,PD,BQ的長度之間的關系進行了探究.下面是小騰的探究過程,請補充完整:
(1)對于點P在AB上的不同位置,畫圖、測量,得到了線段PB,PD,BQ的長度的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
BP/cm | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PD/cm | 2.00 | 1.22 | 0.98 | 1.56 | 2.43 | 3.38 | 4.35 |
BQ/cm | 0.00 | 0.78 | 1.94 | 1.82 | 1.56 | 1.41 | 1.31 |
在PB,PD,BQ的長度這三個量中,確定 的長度是自變量, 的長度和 的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當PD>BQ時,PB長度范圍是 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖一,菱形與菱形的頂點重合,點在對角線上,且.
(1)問題發(fā)現(xiàn):
的值為________;
(2)探究與證明:
將菱形繞點按順時針方向旋轉(zhuǎn)角(),如圖二所示,試探究線段與之間的數(shù)量關系,并說明理由;
(3)拓展與運用:
菱形在旋轉(zhuǎn)過程中,當點,,三點在一條直線上時,如圖三所示,連接并延長,交于點,若,,則的長為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com