【題目】在中,,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.
求證:;
求證:四邊形BDFG為菱形;
若,,求四邊形BDFG的周長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知過點(2,-1),與軸交于點A,F點為(1,2).
(Ⅰ)求的值及A點的坐標(biāo);
(Ⅱ)將函數(shù)的圖象沿軸方向向上平移得到函數(shù),其圖象與軸交于點Q,且OQ=QF,求平移后的函數(shù)的解析式;
(Ⅲ)若點A關(guān)于的對稱點為K,請求出直線FK與軸的交點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,△ABO的頂點坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EF與CD關(guān)于y軸對稱,線段CD與NM關(guān)于直線l對稱.
(1)求點N、M的坐標(biāo)(用含m、a的代數(shù)式表示);
(2)△ABO與△MFE通過平移能重合嗎?能與不能都要說明其理由,若能請你說出一個平移方案(平移的單位數(shù)用m、a表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標(biāo)系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為 m,到墻邊OA的距離分別為 m, m.
(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點到地面的距離;
(2)若該墻的長度為10m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標(biāo)系中,畫出這兩個函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫出x2+bx+c>x+1時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為a,B,C在x軸上,A在y軸上.
(1)作△ABC關(guān)于x軸的對稱圖形△A′B′C′;
(2)求△ABC各頂點坐標(biāo)和△A′B′C′各頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com