【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于點(diǎn)H,過(guò)點(diǎn)C作CD⊥AC,連接AD,點(diǎn)M為AC上一點(diǎn),且AM=CD,連接BM交AH于點(diǎn)N,交AD于點(diǎn)E.
(1)若AB=3,AD= ,求△BMC的面積;
(2)點(diǎn)E為AD的中點(diǎn)時(shí),求證:AD= .
【答案】
(1)解:如圖1中,
在△ABM和△CAD中,
,
∴△ABM≌△CAD,
∴BM=AD= ,
∴AM= =1,
∴CM=CA﹣AM=2,
∴S△BCM= CMBA= 23=3.
(2)解:如圖2中,連接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.
∵AE=ED,∠ACD=90°,
∴AE=CE=ED,
∴∠EAC=∠ECA,
∵△ABM≌△CAD,
∴∠ABM=∠CAD,
∴∠ABM=∠MCE,
∵∠AMB=∠EMC,
∴∠CEM=∠BAM=90°,
∵△ABM∽△ECM,
∴ = ,
∴ = ,∵∠AME=∠BMC,
∴△AME∽△BMC,
∴∠AEM=∠ACB=45°,
∴∠AEC=135°,易知∠PEQ=135°,
∴∠PEQ=∠AEC,
∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,
∴△EPA≌△EQC,
∴EP=EQ,∵EP⊥BP,EQ⊥BC
∴BE平分∠ABC,
∴∠NBC=∠ABN=22.5°,
∵AH垂直平分BC,
∴NB=NC,
∴∠NCB=∠NBC=22.5°,
∴∠ENC=∠NBC+∠NCB=45°,
∴△ENC的等腰直角三角形,
∴NC= EC,∴AD=2EC,
∴2NC= AD,
∴AD= NC,
∵BN=NC,
∴AD= BN.
【解析】(1)首先根據(jù)SAS證出△ABM≌△CAD,推出BM=AD= ,然后根據(jù)勾股定理得出AM的長(zhǎng),再推出CM=CA﹣AM=2,從而利用∴S△BCM= CMBA得出答案;
(2)如圖2中,連接EC、CN,作EQ⊥BC于Q,EP⊥BA于P,想辦法證出△ENC的等腰直角三角形,即可解決問(wèn)題。
【考點(diǎn)精析】掌握線(xiàn)段垂直平分線(xiàn)的性質(zhì)和勾股定理的概念是解答本題的根本,需要知道垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在綜合與實(shí)踐課上,同學(xué)們以“一個(gè)含的直角三角尺和兩條平行線(xiàn)”為背景開(kāi)展數(shù)學(xué)活動(dòng),如圖,已知兩直線(xiàn)且和直角三角形,,,.
操作發(fā)現(xiàn):
(1)在如圖1中,,求的度數(shù);
(2)如圖2,創(chuàng)新小組的同學(xué)把直線(xiàn)向上平移,并把的位置改變,發(fā)現(xiàn),說(shuō)明理由;
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,將如圖中的圖形繼續(xù)變化得到如圖,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求畫(huà)出圖形.
(1)已知點(diǎn)A在格點(diǎn)(即小正方形的頂點(diǎn))上,畫(huà)一條線(xiàn)段AB,長(zhǎng)度為,且點(diǎn)B在格點(diǎn)上.
(2)以上題所畫(huà)的線(xiàn)段AB為一邊,另外兩條邊長(zhǎng)分別為,. 畫(huà)一個(gè)△ABC,使點(diǎn)C在格點(diǎn)上(只需畫(huà)出符合條件的一個(gè)三角形).
(3)所畫(huà)出的△ABC的邊AB上的高線(xiàn)長(zhǎng)為 .(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△OAB中,∠OAB=90,∠AOB=30,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.
【1】求點(diǎn)B的坐標(biāo)
【2】求證:四邊形ABCE是平行四邊形;
【3】如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC=( )
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知線(xiàn)段,點(diǎn)C為線(xiàn)段AB上的一動(dòng)點(diǎn),點(diǎn)D、E分別是AC和BC中點(diǎn).
若,求DE的長(zhǎng);
試說(shuō)明無(wú)論AC取何值不超過(guò),DE的長(zhǎng)不變;
如圖2,已知,過(guò)角的內(nèi)部一點(diǎn)C畫(huà)射線(xiàn)OC,若OD、OE分別平分和,試說(shuō)明的度數(shù)與射線(xiàn)OC的位置無(wú)關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,BE平分∠ABC交AD于點(diǎn)E,BD平分∠EBC.
(1)若∠DBC=35°,則∠A的度數(shù)為________;
(2)若∠DBC=α,求∠A的度數(shù)(用含α的代數(shù)式表示);
(3)已知120°<∠ABC<180°,若點(diǎn)F在線(xiàn)段AE上,連接BF,當(dāng)△BFD為直角三角形時(shí),求∠A與∠FBE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和C的距離分別為,1,2,△ABP繞點(diǎn)B旋轉(zhuǎn)至△CBP′,連結(jié)PP′,并延長(zhǎng)BP與DC相交于點(diǎn)Q,則∠CPQ的大小為______ (度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹(shù),成活98%.現(xiàn)已掛果,經(jīng)濟(jì)效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹(shù)上的楊梅,每棵的產(chǎn)量如折線(xiàn)統(tǒng)計(jì)圖所示.
(1)分別計(jì)算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過(guò)計(jì)算說(shuō)明,哪個(gè)山上的楊梅產(chǎn)量較穩(wěn)定?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com