【題目】如圖,已知二次函數(shù)y=ax2+2ax+c(a>0)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C.過(guò)點(diǎn)B的直線(xiàn)l與這個(gè)二次函數(shù)的圖象的另一個(gè)交點(diǎn)為D,與該圖象的對(duì)稱(chēng)軸交于點(diǎn)E,與y軸交于點(diǎn)F,且DE:EF:FB=1:1:2.
(1)求證:點(diǎn)F為OC的中點(diǎn);
(2)連接OE,若△OBE的面積為2,求這個(gè)二次函數(shù)的關(guān)系式;
(3)設(shè)這個(gè)二次函數(shù)的圖象的頂點(diǎn)為P,問(wèn):以DF為直徑的圓是否可能恰好經(jīng)過(guò)點(diǎn)P?若可能,請(qǐng)求出此時(shí)二次函數(shù)的關(guān)系式;若不可能,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2);(3)以DF為直徑的圓能夠恰好經(jīng)過(guò)點(diǎn)P,
【解析】
(1)首先得出對(duì)稱(chēng)軸,再表示出D,C點(diǎn)坐標(biāo),再利用全等三角形的判定方法得出△DCF≌△BOF,進(jìn)而求出答案;
(2)首先得出F點(diǎn)坐標(biāo),進(jìn)而利用待定系數(shù)法求出直線(xiàn)BC的解析式,進(jìn)而得出答案;
(3)由(1)可得F(0, ),E(﹣1, ),再利用EP=DE,進(jìn)而得出關(guān)于a,c的等式,進(jìn)而求出答案.
(1)如圖1,過(guò)點(diǎn)D作DM∥FO,
∵y=ax2+2ax+c=a(x+1)2+c﹣a,
∴它的對(duì)稱(chēng)軸為x=﹣1,
∵DE:EF:FB=1:1:2,且DM∥NE∥OF,
∴B(2,0),且D點(diǎn)的橫坐標(biāo)為﹣2,
由此可得D(﹣2,c),
∵點(diǎn)C(0,c),
∴D、C關(guān)于x=﹣1對(duì)稱(chēng),
故∠DCF=90°,
在△DCF和△BOF中
∴△DCF≌△BOF,
∴OF=CF,
即點(diǎn)F為CO的中點(diǎn).
(2)∵△OBE的面積為2,B(2,0),
∴E(﹣1,﹣2),
∵OF∥NE,
∴△BOF∽△BNE,
∴
∴
解得:FO= ,
由此可得F(0,﹣ ),C(0,﹣ ),
把B(2,0),C(0,﹣)代入y=ax2+2ax+c得
解得:
∴拋物線(xiàn)解析式為:
(3)以DF為直徑的圓能夠恰好經(jīng)過(guò)點(diǎn)P,
由(1)可得F(0, ),E(﹣1, ),D(﹣2,c),
∴
要使以DF為直徑的圓恰好經(jīng)過(guò)點(diǎn)P,有EP=
∵E(﹣1,),P(﹣1,c﹣a),
∴EP=
∴
另一方面,由B(2,0)可得8a+c=0,即c=﹣8a,
把它代入上式可得a= ,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過(guò)點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線(xiàn)于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個(gè)數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一座古塔AH的高為33米,AH⊥直線(xiàn)l,某校九年級(jí)數(shù)學(xué)興趣小組為了測(cè)得該古塔塔剎AB的高,在直線(xiàn)l上選取了點(diǎn)D,在D處測(cè)得點(diǎn)A的仰角為26.6°,測(cè)得點(diǎn)B的仰角為22.8°,求該古塔塔剎AB的高.(精確到0.1米)(參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)進(jìn)了一批家用空氣凈化器,成本為1200元/臺(tái).經(jīng)調(diào)查發(fā)現(xiàn),這種空氣凈化器每周的銷(xiāo)售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的關(guān)系如圖所示:
(1)請(qǐng)寫(xiě)出這種空氣凈化器每周的銷(xiāo)售量y與 售價(jià)x的函數(shù)關(guān)系式(不寫(xiě)自變量的范圍);
(2)若空氣凈化器每周的銷(xiāo)售利潤(rùn)為W(元),則當(dāng)售價(jià)為多少時(shí),可獲得最大利潤(rùn),此時(shí)的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖直線(xiàn)a,b都與直線(xiàn)m垂直,垂足分別為M、N,MN=1,等腰直角△ABC的斜邊,AB在直線(xiàn)m上,AB=2,且點(diǎn)B位于點(diǎn)M處,將等腰直角△ABC沿直線(xiàn)m向右平移,直到點(diǎn)A與點(diǎn)N重合為止,記點(diǎn)B平移平移的距離為x,等腰直角△ABC的邊位于直線(xiàn)a,b之間部分的長(zhǎng)度和為y,則y關(guān)于x的函數(shù)圖象大致為( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第十二屆校園藝術(shù)節(jié)正在如火如荼的進(jìn)行,我校九年級(jí)組織1500名學(xué)生參加了一次“湘一情校園知識(shí)”大賽.賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于60分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)作為樣本,成績(jī)?nèi)缦拢?/span>
90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.
對(duì)上述成績(jī)進(jìn)行了整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
60≤x<70 | 6 | 0.15 |
70≤x<80 | 8 | 0.2 |
80≤x<90 | a | b |
90≤x≤100 | c | d |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a= ,b= ,c= ,d= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>90分以上(包括90分)的為“優(yōu)”等,請(qǐng)你估計(jì)參加這次比賽的1500名學(xué)生中成績(jī)“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB是⊙C的切線(xiàn),切點(diǎn)為點(diǎn)D,直線(xiàn)AC交⊙C于點(diǎn)E、F,且CF=AC,
(1)求證:△ABF是直角三角形.
(2)若AC=6,則直接回答BF的長(zhǎng)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè)(記為A1,A2,A3),黑球2個(gè)(記為B1,B2).
(1)若先從袋中取出m(m>0)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:①若A為必然事件,則m的值為 ②若A為隨機(jī)事件,則m的取值為
(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用樹(shù)狀圖或列表法求這個(gè)事件的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com