【題目】現(xiàn)今,“微信運動“被越來越多的人關(guān)注和喜愛,某興趣小組隨機調(diào)查了我市50名教師某日“微信運動”中的步數(shù)情況并進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):請根據(jù)以上信息,解答下列問題
(1)寫出a,b的值并補全頻數(shù)分布直方圖;
(2)50名教師該日“微信運動”統(tǒng)計數(shù)據(jù)中步數(shù)的中位數(shù)落在第 組;本市約有40000名教師,估計日行走步數(shù)超過1.2萬步(包含1.2萬步)的教師約有 名.
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步)的兩名教師與大家分享心得,求被選取的兩名教師恰好都在2000步(包含20000)以上的概率.
步數(shù)(萬步) | 頻數(shù) | 頻率 |
0≤x<0.4 | 8 | a |
0.4≤x<0.8 | 15 | 0.3 |
0.8≤x<1.2 | 12 | 0.241 |
1.2≤x<1.6 | 10 | 0.2 |
1.6≤x<2 | 3 | 0.06 |
2≤x<2.4 | b | 0.04 |
【答案】(1)a=0.16,b=2,補全頻數(shù)分布直方圖見解析;(2)3,12000;(3).
【解析】
(1)根據(jù)頻率=頻數(shù)÷總數(shù)可得答案;
(2)用樣本中超過12000步(包含12000步)的頻率之和乘以總?cè)藬?shù)可得答案;
(3)畫樹狀圖列出所有等可能結(jié)果,根據(jù)概率公式求解可得.
解:(1)a=8÷50=0.16,b=50×0.04=2,
補全頻數(shù)分布直方圖如下:
(2)中位數(shù)落在第3組;
40000×(0.2+0.06+0.04)=12000,
答:估計日行走步數(shù)超過1.2萬步(包含1.2萬步)的教師約有12000名.
故答案為:3,12000.
(3)設(shè)16000≤x<20000的3名教師分別為A、B、C,20000≤x<24000的2名教師分別為X、Y,
畫樹狀圖如下:
由樹狀圖可知,被選取的兩名教師恰好都在20000步(包含20000步)以上的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一直角三角形AOB,O為坐標原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求拋物線的解析式;
(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標為t,設(shè)拋物線對稱軸l與x軸交于一點E,連接PE,交CD于F,求以C、E、F為頂點三角形與△COD相似時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會虧本,且每天的銷售量y(千克)與銷售單價x(元/千克)之間函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當該品種草莓的定價為多少時,每天銷售獲得利潤最大?最大利潤是多少?
(3)某村今年草莓采摘期限30天,預計產(chǎn)量6000千克,則按照(2)中的方式進行銷售,能否銷售完這批草莓?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我校對全校學生進傳統(tǒng)文化禮儀知識測試,為了了解測試結(jié)果,隨機抽取部分學生的成績進行分析,現(xiàn)將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).
請你根據(jù)圖中所給的信息解答下列問題:(1)本次隨機抽取的人數(shù)是 人,并將以上兩幅統(tǒng)計圖補充完整;
(2)若“一般”和“優(yōu)秀”均被視為達標成績,則我校被抽取的學生中有 人達標;
(3)若我校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(3,0),與y軸交于點C.點D是直線BC上方拋物線上一動點.
(1)求拋物線的解析式;
(2)如圖1,連接BD、CD,設(shè)點D的橫坐標為m,△BCD的面積為s.試求出s與m的函數(shù)關(guān)系式,并求出s的最大值;
(3)如圖2,設(shè)AB的中點為E,作DF⊥BC,垂足為F,連接CD、CE,是否存在點D,使得以C、D,F三點為頂點的三角形與△CEO相似?若存在,請直接寫出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點A的坐標為(1,0),那么點B2018的坐標為( 。
A. (1,1) B. (0,) C. () D. (﹣1,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近幾年,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也在逐年增加,某商場從廠家購進了A,B兩種型號的空氣凈化器,兩種凈化器的銷售相關(guān)信息見表:
A型銷售數(shù)量(臺) | B型銷售數(shù)量(臺) | 總利潤(元) |
5 | 3 | 950 |
3 | 4 | 900 |
(1)每臺A型空氣凈化器和B型空氣凈化器的銷售利潤分別是多少?
(2)該公司計劃一次購進兩種型號的空氣凈化器共80臺,其中B型空氣凈化器的進貨量不多于A型空氣凈化器的2倍,為使該公司銷售完這80臺空氣凈化器后的總利潤最大,請你設(shè)計相應(yīng)的進貨方案;
(3)已知A型空氣凈化器的凈化能力為200m3/小時,B型空氣凈化器的凈化能力為300m3/小時,某長方體室內(nèi)活動場地的總面積為200m2,室內(nèi)墻高3m,該場地負責人計劃購買5臺空氣凈化器每天花費30分鐘將室內(nèi)空氣凈化一新,若不考慮空氣對流等因素,至多要購買A型空氣凈化器多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點,與y軸交于點C(0,﹣2),點A的坐標是(2,0),P為拋物線上的一個動點,過點P作PD⊥x軸于點D,交直線BC于點E,拋物線的對稱軸是直線x=﹣1.
(1)求拋物線的函數(shù)表達式;
(2)若點P在第二象限內(nèi),且PE=OD,求△PBE的面積.
(3)在(2)的條件下,若M為直線BC上一點,在x軸的上方,是否存在點M,使△BDM是以BD為腰的等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是“明清影視城”的一扇圓弧形門,小紅到影視城游玩,她了解到這扇門的相關(guān)數(shù)據(jù):這扇圓弧形門所在的圓與水平地面是相切的,AB=CD=0.25m,BD=1.5m,且AB、CD與水平地面都是垂直的.根據(jù)以上數(shù)據(jù),請你幫小紅計算出這扇圓弧形門的最高點離地面的距離是( 。
A.2mB.2.5mC.2.4mD.2.1m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com