【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元.銷售價(jià)為每千克60元時(shí),一天能銷售80千克,經(jīng)市場(chǎng)調(diào)查,該商品每漲價(jià)1元,一天銷售量就減少2千克,設(shè)該商品的售價(jià)漲了x元,每天銷售該商品的總利潤(rùn)為y元.

1)求yx之間的函數(shù)表達(dá)式;

2)當(dāng)x為多少時(shí)每天總利潤(rùn)y最大,最大利潤(rùn)是多少?

【答案】1y=﹣2x2+40x+1600;(2)當(dāng)x10時(shí)每天總利潤(rùn)y最大,最大利潤(rùn)是1800

【解析】

1)根據(jù)總利潤(rùn)=單件利潤(rùn)×銷售量可得函數(shù)解析式;

2)將所得函數(shù)解析式配方成頂點(diǎn)式,再根據(jù)二次函數(shù)的性質(zhì)求解可得.

解:(1)根據(jù)題意知,;

2)∵,

∴當(dāng)x10時(shí),y取得最大值,最大值為1800

答:當(dāng)x10時(shí)每天總利潤(rùn)y最大,最大利潤(rùn)是1800

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是矩形ABCD的邊上一動(dòng)點(diǎn),矩形兩邊長(zhǎng)ABBC長(zhǎng)分別為1520,那么P到矩形兩條對(duì)角線ACBD的距離之和是( 。

A.6B.12C.24D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整,并解決相關(guān)問(wèn)題:

(1)函數(shù)的自變量x的取值范圍是 ;

(2)下表是yx的幾組對(duì)應(yīng)值.

x

0

1

2

3

4

y

2

4

2

m

表中m的值為_(kāi)_______________;

(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫(huà)出函數(shù)的大致圖象;

(4)結(jié)合函數(shù)圖象,請(qǐng)寫出函數(shù)的一條性質(zhì):______________________.

(5)解決問(wèn)題:如果函數(shù)與直線y=a的交點(diǎn)有2個(gè),那么a的取值范圍是______________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過(guò)B、C兩點(diǎn).

(1)求拋物線的解析式;

(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo);

(3)在(2)的結(jié)論下,過(guò)點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】創(chuàng)客聯(lián)盟的隊(duì)員想用3D打印完成一幅邊長(zhǎng)為4米的正方形作品ABCD,設(shè)計(jì)圖案如圖所示(四周陰影是四個(gè)全等的矩形,用材料甲打;中心區(qū)是正方形A′B′C′D′,用材料乙打印).在打印厚度保持相同的情況下,兩種材料的消耗成本如下表

材料

價(jià)格(元/2

60

30

設(shè)矩形的較短邊AH的長(zhǎng)為x米,打印材料的總費(fèi)用為y元.

1A′D′的長(zhǎng)為   米(用含x的代數(shù)式表示);

2)求y關(guān)于x的函數(shù)解析式;

3)當(dāng)中心區(qū)的邊長(zhǎng)不小于3時(shí),預(yù)備材料的購(gòu)買資金700元夠用嗎?請(qǐng)利用函數(shù)的增減性來(lái)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,矩形OABC的兩個(gè)頂點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B的坐標(biāo)是(8,2),點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),連接AP,以AP為一邊朝點(diǎn)B方向作正方形PADE,連接OP并延長(zhǎng)與DE交于點(diǎn)M,設(shè)CPaa0).

1)請(qǐng)用含a的代數(shù)式表示點(diǎn)P,E的坐標(biāo).

2)連接OE,并把OE繞點(diǎn)E逆時(shí)針?lè)较蛐D(zhuǎn)90°得EF.如圖2,若點(diǎn)F恰好落在x軸的正半軸上,求a的值.

3)①如圖1,當(dāng)點(diǎn)MDE的中點(diǎn)時(shí),求a的值.

②在①的前提下,并且當(dāng)a4時(shí),OP的延長(zhǎng)線上存在點(diǎn)Q,使得EQ+PQ有最小值,請(qǐng)直接寫出EQ+PQ的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB6AD9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BGAE,垂足為G,BG4,則CEF的周長(zhǎng)為( 。

A.11.5B.10C.9.5D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2=x3= ;

(2)拓展:用轉(zhuǎn)化思想求方程的解;

(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(guò)(﹣1,0),(3,0),(1,﹣5)三點(diǎn).

1)求該二次函數(shù)的解析式;

2)求該圖象的頂點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案