【題目】如圖,在△ABC 中,點OAC邊上的一個動點,過點O作直線MNBC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F

1)求證:EO=FO

2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

【答案】(1)見解析;(2) O運動到OA=OC處,四邊形AECF是矩形.理由見解析.

【解析】

1)由于CE平分∠BCA,那么有∠1=2,而MNBC,利用平行線的性質(zhì)有∠1=3,等量代換有∠2=3,于OE=OC,同理OC=OF,于是OE=OF;
2OA=OC,那么可證四邊形AECF是平行四邊形,又CE、CF分別是∠BCA及其外角的角平分線,易證∠ECF90°,從而可證四邊形AECF是矩形.

(1)當點O運動到AC中點時,四邊形AECF是矩形;理由如下:

如圖所示:


CE平分∠BCA,
∴∠1=2
又∵MNBC,
∴∠1=3
∴∠3=2,
EO=CO
同理,FO=CO
EO=FO;
(2)O運動到OA=OC處,四邊形AECF是矩形.理由如下:

OA=OC
∴四邊形AECF是平行四邊形,
CF是∠BCA的外角平分線,
∴∠4=5,
又∵∠1=2
∴∠1+5=2+4,
又∵∠1+5+2+4=180°,
∴∠2+4=90°
∴平行四邊形AECF是矩形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AC與BD相交于點O.若 AO=3,∠OBC=30°,求矩形的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程 x2-6x+m+4=0有兩個實數(shù)根 x1,x2.

1)求m的取值范圍;

2)若 x1x2滿足x2-2x1=-3 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校學生的身高情況,王老師隨機抽取該校男生、女生進行抽樣調(diào)查,已知抽取的樣本中,男生、女生人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:

組別

身高

身高情況分組表

根據(jù)圖表提供的信息,回答下列問題:

1)樣本中,女生身高在組的人數(shù)有_________人;

2)在上面的扇形統(tǒng)計圖中,表示組的扇形的圓心角是_________°;

3)已知該校共有男生800人,女生760人,請估計該校身高在之間的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學1000名學生參加了“環(huán)保知識競賽”,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:

成績分組

頻數(shù)

頻率

50x60

8

0.16

60x70

12

a

70x80

0.5

80x90

3

0.06

90x90

b

c

合計

1

1)寫出,的值;

2)請估計這1000名學生中有多少人的競賽成績不低于70分;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1, , .OBC的中點,D沿BAC方向從B運動到C設(shè)點D經(jīng)過的路徑長為,1中某條線段的長為y,若表示yx的函數(shù)關(guān)系的大致圖象如圖2所示則這條線段可能是圖1中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:∠1+∠2180°,∠B=∠D,CD平分∠ACF

1DEBF平行嗎?請說明理由.

2ABCD位置關(guān)系如何?為什么?

3AB平分∠CAE嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種貨車,3輛大貨車與2輛小貨車一次可以運貨21噸,2輛大貨車與4輛小貨車一次可以運貨22噸.

1)每輛大貨車和每輛小貨車一次各可以運貨多少噸?

2)現(xiàn)有這兩種貨車共10輛,要求一次運貨不低于35噸,則其中大貨車至少多少輛?(用不等式解答)

3)日前有23噸貨物需要運輸,欲租用這兩種貨車運送,要求全部貨物一次運完且每輛車必須裝滿.已知每輛大貨車一次運貨租金為300元,每輛小貨車一次運貨租金為200元,請列出所有的運輸方案井求出最少租金.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點 經(jīng)過點A(﹣1,0),B(5,﹣6),C(6,0)

(1)求拋物線的解析式;

(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)若點Q為拋物線的對稱軸上的一個動點,試指出△QAB為等腰三角形的點Q一共有幾個?并請求出其中某一個點Q的坐標.

查看答案和解析>>

同步練習冊答案